Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15653
Назив: In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach
Аутори: Daghighi A.
Casañola Martin, Gerardo Maikel
Timmerman T.
Milenkovic, Dejan
Luĉić B.
Rasulev, Bakhtiyor
Датум издавања: 2022
Сажетак: In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure–Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD50). An initial set of 4885 molecular descriptors was generated and applied to build Support Vector Regression (SVR) models. The best two SVR models, SVR_A and SVR_B, were selected to build an Ensemble Model by means of Multiple Linear Regression (MLR). The obtained Ensemble Model showed improved performance over the base SVR models in the training set (R2 = 0.88), validation set (R2 = 0.95), and true external test set (R2 = 0.92). The models were also internally validated by 5-fold cross-validation and Y-scrambling experiments, showing that the models have high levels of goodness-of-fit, robustness and predictivity. The contribution of descriptors to the toxicity in the models was assessed using the Accumulated Local Effect (ALE) technique. The proposed approach provides an important tool to assess toxicity of nitroaromatic compounds, based on the ensemble QSAR model and the structural relationship to toxicity by analyzed contribution of the involved descriptors.
URI: https://scidar.kg.ac.rs/handle/123456789/15653
Тип: article
DOI: 10.3390/toxics10120746
ISSN: -
SCOPUS: 2-s2.0-85144661227
Налази се у колекцијама:Institute for Information Technologies, Kragujevac

Број прегледа

378

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.