Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15728
Назив: Contrastive Bayesian Analysis for Deep Metric Learning
Аутори: Kan S.
He Z.
Cen Y.
Li, Yidong
Mladenovic, Vladimir
He Z.
Датум издавања: 2022
Сажетак: Recent methods for deep metric learning have been focusing on designing different contrastive loss functions between positive and negative pairs of samples so that the learned feature embedding is able to pull positive samples of the same class closer and push negative samples from different classes away from each other. In this work, we recognize that there is a significant semantic gap between features at the intermediate feature layer and class labels at the final output layer. To bridge this gap, we develop a contrastive Bayesian analysis to characterize and model the posterior probabilities of image labels conditioned by their features similarity in a contrastive learning setting. This contrastive Bayesian analysis leads to a new loss function for deep metric learning. To improve the generalization capability of the proposed method onto new classes, we further extend the contrastive Bayesian loss with a metric variance constraint. Our experimental results and ablation studies demonstrate that the proposed contrastive Bayesian metric learning method significantly improves the performance of deep metric learning in both supervised and pseudo-supervised scenarios, outperforming existing methods by a large margin.
URI: https://scidar.kg.ac.rs/handle/123456789/15728
Тип: article
DOI: 10.1109/TPAMI.2022.3221486
ISSN: 0162-8828
SCOPUS: 2-s2.0-85141550015
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

387

Број преузимања

8

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.