Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15775
Назив: CycleGAN for virtual stain transfer: Is seeing really believing?
Аутори: Vasiljević, Jelica
Nisar Z.
Feuerhake F.
Wemmert, Cedric
Lampert, Thomas
Датум издавања: 2022
Сажетак: Digital Pathology is an area prone to high variation due to multiple factors which can strongly affect diagnostic quality and visual appearance of the Whole-Slide-Images (WSIs). The state-of-the art methods to deal with such variation tend to address this through style-transfer inspired approaches. Usually, these solutions directly apply successful approaches from the literature, potentially with some task-related modifications. The majority of the obtained results are visually convincing, however, this paper shows that this is not a guarantee that such images can be directly used for either medical diagnosis or reducing domain shift.This article shows that slight modification in a stain transfer architecture, such as a choice of normalisation layer, while resulting in a variety of visually appealing results, surprisingly greatly effects the ability of a stain transfer model to reduce domain shift. By extensive qualitative and quantitative evaluations, we confirm that translations resulting from different stain transfer architectures are distinct from each other and from the real samples. Therefore conclusions made by visual inspection or pretrained model evaluation might be misleading.
URI: https://scidar.kg.ac.rs/handle/123456789/15775
Тип: article
DOI: 10.1016/j.artmed.2022.102420
ISSN: 0933-3657
SCOPUS: 2-s2.0-85139823627
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

360

Број преузимања

3

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.