Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15839
Назив: Artificial intelligence approach toward analysis of COVID-19 development—Personalized and epidemiological model
Аутори: Sustersic, Tijana
Blagojevic, Andjela
Датум издавања: 2022
Сажетак: Although ML has been examined for a variety of epidemiological and clinical concerns, as well as for COVID-19 survival prediction, there is a notable lack of research dealing with ML utilization in predicting disease severity changes during the course of the disease. This chapter encompasses two approaches in predicting COVID-19 spread—personalized model for predicting disease development in infected individual patients and an epidemiological model for predicting disease spread in population. Personalized model uses XGboost for the classification of infected individuals into four different groups based on the values of blood biomarkers analyzed by Gradient boosting regressor and chosen as biomarkers with the highest effect on the classification of COVID-19 patients. The epidemiological model includes two proposed methods—differential equation-based SEIRD model and an LSTM deep learning model. Proposed models can be used as tools useful in the research and control of infectious illnesses and in reducing the burden on the health system.
URI: https://scidar.kg.ac.rs/handle/123456789/15839
Тип: bookPart
DOI: 10.1016/B978-0-12-823956-8.00013-4
ISSN: -
SCOPUS: 2-s2.0-85138351621
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

384

Број преузимања

5

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.