Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/15839
Назив: | Artificial intelligence approach toward analysis of COVID-19 development—Personalized and epidemiological model |
Аутори: | Sustersic, Tijana Blagojevic, Andjela |
Датум издавања: | 2022 |
Сажетак: | Although ML has been examined for a variety of epidemiological and clinical concerns, as well as for COVID-19 survival prediction, there is a notable lack of research dealing with ML utilization in predicting disease severity changes during the course of the disease. This chapter encompasses two approaches in predicting COVID-19 spread—personalized model for predicting disease development in infected individual patients and an epidemiological model for predicting disease spread in population. Personalized model uses XGboost for the classification of infected individuals into four different groups based on the values of blood biomarkers analyzed by Gradient boosting regressor and chosen as biomarkers with the highest effect on the classification of COVID-19 patients. The epidemiological model includes two proposed methods—differential equation-based SEIRD model and an LSTM deep learning model. Proposed models can be used as tools useful in the research and control of infectious illnesses and in reducing the burden on the health system. |
URI: | https://scidar.kg.ac.rs/handle/123456789/15839 |
Тип: | bookPart |
DOI: | 10.1016/B978-0-12-823956-8.00013-4 |
ISSN: | - |
SCOPUS: | 2-s2.0-85138351621 |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.