Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15878
Назив: Event-driven NN adaptive fixed-time control for nonlinear systems with guaranteed performance
Аутори: Song X.
Sun P.
Song S.
Stojanović, Vladimir
Датум издавања: 2022
Сажетак: This article investigates the adaptive neural network fixed-time tracking control issue for a class of strict-feedback nonlinear systems with prescribed performance demands, in which the radial basis function neural networks (RBFNNs) are utilized to approximate the unknown items. First, an modified fractional-order command filtered backstepping (FOCFB) control technique is incorporated to address the issue of the iterative derivation and remove the impact of filtering errors, where a fractional-order filter is adopted to improve the filter performance. Furthermore, an event-driven-based fixed-time adaptive controller is constructed to reduce the communication burden while excluding the Zeno-behavior. Stability results prove that the designed controller not only guarantees all the signals of the closed-loop system (CLS) are practically fixed-time bounded, but also the tracking error can be regulated to the predefined boundary. Finally, the feasibility and superiority of the proposed control algorithm are verified by two simulation examples.
URI: https://scidar.kg.ac.rs/handle/123456789/15878
Тип: article
DOI: 10.1016/j.jfranklin.2022.04.003
ISSN: 0016-0032
SCOPUS: 2-s2.0-85129950833
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

375

Број преузимања

4

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.