Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15900
Назив: Enhancing PLS-SEM-Enabled Research with ANN and IPMA: Research Study of Enterprise Resource Planning (ERP) Systems’ Acceptance Based on the Technology Acceptance Model (TAM)
Аутори: Sternad Zabukovšek S.
Bobek S.
Zabukovšek U.
Kalinić, Zoran
Tominc P.
Датум издавања: 2022
Сажетак: PLS-SEM has been used recently more and more often in studies researching critical factors influencing the acceptance and use of information systems, especially when the technology acceptance model (TAM) is implemented. TAM has proved to be the most promising model for researching different viewpoints regarding information technologies, tools/applications, and the acceptance and use of information systems by the employees who act as the end-users in companies. However, the use of advanced PLS-SEM techniques for testing the extended TAM research models for the acceptance of enterprise resource planning (ERP) systems is scarce. The present research aims to fill this gap and aims to show how PLS-SEM results can be enhanced by advanced techniques: artificial neural network analysis (ANN) and Importance–Performance Matrix Analysis (IPMA). ANN was used in this research study to overcome the limitations of PLS-SEM regarding the linear relationships in the model. IPMA was used in evaluating the importance and performance of factors/drivers in the SEM. From the methodological point of view, results show that the research approach with ANN artificial intelligence complements the results of PLS-SEM while allowing the capture of nonlinear relationships between the variables of the model and the determination of the relative importance of each factor studied. On other hand, IPMA enables the identification of factors with relatively low performance but relatively high importance in shaping dependent variables.
URI: https://scidar.kg.ac.rs/handle/123456789/15900
Тип: article
DOI: 10.3390/math10091379
ISSN: -
SCOPUS: 2-s2.0-85129288136
Налази се у колекцијама:Faculty of Economics, Kragujevac

Број прегледа

429

Број преузимања

16

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.