Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15985
Назив: Artificial intelligence approaches to the biochemistry of oxidative stress: Current state of the art
Аутори: Pantic, Igor
Paunovic, Jovana
Pejic, Snezana
Drakulic, Dunja
Todorovic, Ana
Stankovic, Sanja
Vučević, Danijela
Cumic, Jelena
Radosavljević, Slobodanka
Датум издавања: 2022
Сажетак: Artificial intelligence (AI) and machine learning models are today frequently used for classification and prediction of various biochemical processes and phenomena. In recent years, numerous research efforts have been focused on developing such models for assessment, categorization, and prediction of oxidative stress. Supervised machine learning can successfully automate the process of evaluation and quantification of oxidative damage in biological samples, as well as extract useful data from the abundance of experimental results. In this concise review, we cover the possible applications of neural networks, decision trees and regression analysis as three common strategies in machine learning. We also review recent works on the various weaknesses and limitations of artificial intelligence in biochemistry and related scientific areas. Finally, we discuss future innovative approaches on the ways how AI can contribute to the automation of oxidative stress measurement and diagnosis of diseases associated with oxidative damage.
URI: https://scidar.kg.ac.rs/handle/123456789/15985
Тип: review
DOI: 10.1016/j.cbi.2022.109888
ISSN: 0009-2797
SCOPUS: 2-s2.0-85126518159
Налази се у колекцијама:Faculty of Medical Sciences, Kragujevac

Број прегледа

381

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.