Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/16157
Назив: Machine Learning-based Image Processing in Support of Discus Hernia Diagnosis
Аутори: Sustersic, Tijana
Rankovic, Vesna
Kovacevic, Vojin
Milovanović, Vladimir
Rasulić L.
Filipovic, Nenad
Датум издавања: 2021
Сажетак: Diagnosing lumbar discus hernia is a challenging task, due to disc and vertebral variations in size, shape, quantity, and appearance. Medical history and physical examination, electrodiagnostic tests, and MRIs are all used by doctors to set a definitive diagnosis. A majority of the state-of-the-art methods are semi-automatic and require extra corrections to the solution or are extremely sensitive to changes in parameters. Based on literature review, there is a solid basis for implementation of machine learning-based methods for disc herniation detection in MRI images. An automated segmentation method of vertebrae and discs is proposed in this study as a first step towards a decision support system for discus hernia identification. Dataset consisted of 104 images in sagittal and 99 images in axial views. Optimized convolutional neural network U-net has demonstrated very high accuracy in segmentation. Additional result represents the calculated distance from the disc's center to the disc's edge points in axial images across 360°, which results in clearly different number of peaks for the healthy and diseased discs. Fully automated computer diagnostic system helps speed up the process of setting up adequate diagnosis and reducing human mistakes.
URI: https://scidar.kg.ac.rs/handle/123456789/16157
Тип: conferenceObject
DOI: 10.1109/BIBE52308.2021.9635305
ISSN: -
SCOPUS: 2-s2.0-85123716400
Налази се у колекцијама:Faculty of Engineering, Kragujevac
Faculty of Medical Sciences, Kragujevac

Број прегледа

716

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.