Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/16599
Назив: Optimization and prediction of aluminium composite wear using Taguchi design and artificial neural network
Аутори: Stojanovic, Blaza
Velickovic Sandra
Vencl, Aleksandar
Babic, Miroslav
Petrovic, Nenad
Miladinovic, Slavica
Cherkezova-Zheleva, Zara
Датум издавања: 2016
Сажетак: This paper analyses wear behaviour of Al-Si alloy A356 (AlSi7Mg) based composite reinforced with 10 wt. % SiC, and compare it with the base A356 alloy. Composite are obtained using the compocasting procedure. Tribological testing have been conducted on a block-on-disc tribometer with three varying loads (10, 20 and 30 N) and three sliding speeds (0.25, 0.5 and 1 m/s), under dry sliding conditions. Sliding distance of 300 m was constant. The goal of the paper was to optimize the influencing parameters in order to minimize specific wear rate using the Taguchi method. The analysis showed that the sliding speed has the greatest influence on specific wear rate (39.5 %), followed by the load (23.6 %), and the interaction between sliding speed and load (19.4 %). A regression analysis and experiment corroboration was conducted in order to verify the results of the optimization. Specific wear rate prediction was done using artificial neural network (ANN).
URI: https://scidar.kg.ac.rs/handle/123456789/16599
Тип: article
ISSN: 1313-9878
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

423

Број преузимања

23

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
OPTIMIZATION AND PREDICTION OF ALUMINIUM COMPOSITE WEAR USING TAGUCHI DESIGN AND ARTIFICIAL NEURAL NETWORK.pdf956.09 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons