Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/16654
Назив: | Automated Pipeline for Continual Data Gathering and Retraining of the Machine Learning-Based COVID-19 Spread Models |
Аутори: | Baressi Šegota, Sandi Lorencin, Ivan Andjelic, Nikola Štifanić, Daniel Musulin, Jelena Vlahinic S. Sustersic, Tijana Blagojevic, Andjela Car, Zlatan |
Датум издавања: | 2021 |
Сажетак: | INTRODUCTION: The development of epidemiological curve models is one of the key factors in the combat of epidemiological diseases such as COVID-19. OBJECTIVES: The goal of this paper is to develop a system for automatic training and testing of AI-based regressive models of epidemiological curves using public data,which involves automating the data acquisition and speeding up the training of the models. METHODS: The research applies Multilayer Perceptron (MLP) for the creation of models,implemented within a system for automatic data fetching and training,and evaluated using the coefficient of determination (R2). Training time is lowered through the application of data filtering and simplifying the model selection. RESULTS: The developed system can train high precision models rapidly,allowing for quick model delivery All trained models achieve scores which are higher than 0.95. CONCLUSION: The results show that the development of a quick COVID-19 spread modeling system is possible. |
URI: | https://scidar.kg.ac.rs/handle/123456789/16654 |
Тип: | article |
DOI: | http://dx.doi.org/10.4108/eai.4-5-2021.169582 |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
eai.4-5-2021.169582.pdf | 2.55 MB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.