Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/17409
Назив: On extremal graphs of weighted Szeged index
Аутори: Bok, Jan
Furtula, Boris
Jedličková, Nikola
Škrekovski, Riste
Датум издавања: 2019
Сажетак: An extension of the well-known Szeged index was introduced recently, named as weighted Szeged index (\(wSz(G)\)). This paper is devoted to characterizing the extremal trees and graphs of this new topological invariant. In particular, we proved that the star is a tree having the maximal \(wSz(G)\). Finding a tree with the minimal \(wSz(G)\) is not an easy task to be done. Here, we present the minimal trees up to 25 vertices obtained by computer and describe the regularities which retain in them. Our preliminary computer tests suggest that a tree with the minimal \(wSz(G)\) is also the connected graph of the given order that attains the minimal weighted Szeged index. Additionally, it is proven that among the bipartite connected graphs the complete balanced bipartite graph \(K_{\left\lfloor n/2\right\rfloor\left\lceil n/2 \right\rceil}\) attains the maximal \(wSz(G)\). We believe that the \(K_{\left\lfloor n/2\right\rfloor\left\lceil n/2 \right\rceil}\) is a connected graph of given order that attains the maximum \(wSz(G)\).
URI: https://scidar.kg.ac.rs/handle/123456789/17409
Тип: article
ISSN: 0340-6253
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

352

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
paper0134.pdf399.47 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.