Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/18339
Назив: SELECTION OF MACHINE LEARNING ALGORITHMS FOR NANOCOMPOSITE ZA-27 MATERIAL TRANSFER PREDICTION
Аутори: Djordjevic, Aleksandar
Dzunic, Dragan
Pantić, Marko
Erić, Milan
Mitrovic, Slobodan
Stefanovic, Miladin
Датум издавања: 2023
Сажетак: This study explores the use of machine learning algorithms in predicting material transfer in tribological contacts. The results of the analysis indicate that the machine learning models can accurately predict the occurrence of material transfer with a high degree of accuracy. The Gradient Boosting Classifier algorithm was found to outperform other algorithms in terms of predictive accuracy. The study's practical implications suggest that machine learning can be an effective tool for predicting and preventing material transfer, leading to increased system reliability and durability. The findings highlight the importance of domain-specific expertise in selecting appropriate algorithms and input features. One limitation of the study is that it focused only on material transfer and did not consider other important factors such as wear and friction. Future research could investigate the use of machine learning algorithms in predicting wear and friction in tribological systems.
URI: https://scidar.kg.ac.rs/handle/123456789/18339
Тип: conferenceObject
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

369

Број преузимања

45

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
4.SERBIATRIB.23.pdf1.01 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons