Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/18471
Назив: MACHINE LEARNING PREDICTION MODEL FOR SMALL DATA SETS INSTEAD OF DESTRUCTIVE TESTS FOR A CASE OF RESISTANCE BRAZING PROCESS VERIFICATION
Аутори: Pajić, Nemanja
Djapan, Marko
Buluschek, Eva
Fahrenbruch, Waldemar
Djordjevic, Aleksandar
Stefanovic, Miladin
Датум издавања: 2023
Сажетак: This paper presents a case study of Machine Learning (ML) prediction model for small data sets instead of destructive testing of brazed contacts. The main problems noted in the study were data availability, data quality, an extremely low number of NOK destructive test results and overall small data set. Recent researches are not very often focused on small data set ML prediction models and even less often on its application in resistance brazing. This paper tends to bridge this gap. The case study methodology consists of data collection, data preparation, correlation analysis, feature selection, model training, hyperparameter optimization, and model evaluation. It is proven possible to train ML prediction model with small datasets to predict numerical test outcomes if dataset quality is adequate. The practical use of this approach is reflected in the reduction of test costs since destructive tests can be quite expensive, and ML prediction model is one time, relatively low investment.
URI: https://scidar.kg.ac.rs/handle/123456789/18471
Тип: article
DOI: 10.23055/ijietap.2023.30.3.8691
ISSN: 1943-670X
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

594

Број преузимања

98

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
15_8691+PROOFREAD+(NG).pdf993.17 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.