Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/18632
Назив: Philosophical Interpretation of Connection of Robust Statistics and Fuzzy Logic: The Robust Fuzzy Clustering
Аутори: Djordjevic, Vladimir
Filipovic, Vojislav
Датум издавања: 2017
Сажетак: Clustering methods have the key role in pattern recognition, computer vision, and control. In real applications, the data are corrupted with stochastic noise which often has outliers. It follows that clustering techniques need to be robust. It is observed that robust statistics and fuzzy set theory have much in common. Namely, the concept of weight functions in robust statistics can be related to the concept of membership function in fuzzy set theory. In the paper proposed the new objective function for cluster analysis. For the clustering the modified Gustafson-Kessel algorithm is used and the modification is based on possibility theory. The final goal is membership function determination. That is the important part of the Takagi–Sugeno models which represent the fuzzy model of nonlinear dynamic systems.
URI: https://scidar.kg.ac.rs/handle/123456789/18632
Тип: conferenceObject
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

345

Број преузимања

10

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
hm2017_djordjevic.pdf575.71 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.