Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/18651
Назив: Recursive Estimation of the Takagi-Sugeno Models I: Fuzzy Clustering and the Premise Membership Functions Estimation
Аутори: Filipovic, Vojislav
Djordjevic, Vladimir
Датум издавања: 2014
Сажетак: Fuzzy modelling is an approximation of nonlinear systems by a finite collection of linear systems. On this concept Takagi-Sugeno fuzzy models are based. The procedure for identification of these models include two steps: (a) estimation of membership functions, (b) model parameter estimation. In this paper only the step (a) is considered, where GustafsonKessel clustering algorithm is used. The algorithm detects clusters of different shapes. Parameter estimation of the premise membership function is based on the implementation of recursive least squares algorithm. Based on the obtained clusters, recursive least squares algorithm estimates parameters of membership functions. In this paper, it is assumed that the membership functions have triangular shape, performances of the proposed algorithm are demonstrated by simulation.
URI: https://scidar.kg.ac.rs/handle/123456789/18651
Тип: conferenceObject
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

374

Број преузимања

19

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
hm2014_filipovic.pdf454.56 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.