Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/18860
Назив: Joint estimation of linear state-space models under non-Gaussian noises
Аутори: Stojanović, Vladimir
Pršić, Dragan
Датум издавања: 2018
Сажетак: Joint estimation of states and time-varying parameters of linear state space models is of practical importance for fault diagnosis and fault tolerant control. Previous works on this topic haven’t considered joint estimation of linear systems in presence of outliers. They can significantly make worse the properties of linearly recursive algorithms which are designed to work in the presence of Gaussian noises. This paper proposes two kinds of strategies of joint parameter-state robust estimation of linear state space models in presence of non-Gaussian noises. Both possible cases are considered, joint robust estimation algorithm in case of parameter-independent matrices as well as in case of parameter-dependent matrices. Because of their good features in robust filtering, the modified and extended Masreliez-Martin filters represent a cornerstone for realization of the robust algorithms for joint state-parameter estimation of linear time-varying stochastic systems in presence of non-Gaussian noises. The good features of the proposed robust algorithms for joint estimation of linear time-varying stochastic systems are illustrated by simulations.
URI: https://scidar.kg.ac.rs/handle/123456789/18860
Тип: conferenceObject
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

350

Број преузимања

8

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
saum2018_stojanovic.pdf1.02 MBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.