Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/19056
Назив: | Q-learning based fault estimation and fault tolerant iterative learning control for MIMO systems |
Аутори: | Wang, Rui Zhuang, Zhihe Tao, Hongfeng Paszke, Wojciech Stojanović, Vladimir |
Датум издавања: | 2023 |
Сажетак: | This paper proposes a Q-learning based fault estimation (FE) and fault tolerant control (FTC) scheme under iterative learning control (ILC) framework. Due to the repetitive demands on control actuators for repetitive tasks, ILC is sensitive to actuator faults. Moreover, unknown faults varying with both time and trial axes pose a challenge to the control performance of ILC. This paper introduces Q-learning algorithm for FE to continuously adjust the estimator and adapt the changing faults. Then, FTC is designed by adopting the norm-optimal iterative learning control (NOILC) framework, where the controller is adjusted based on the FE results from Q-learning to counteract the influence of faults. Finally, the simulation on the plant of a mobile robot verifies the effectiveness of the proposed algorithm. |
URI: | https://scidar.kg.ac.rs/handle/123456789/19056 |
Тип: | article |
DOI: | 10.1016/j.isatra.2023.07.043 |
ISSN: | 0019-0578 |
Налази се у колекцијама: | Faculty of Mechanical and Civil Engineering, Kraljevo |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
wang2023qlearning.pdf Ограничен приступ | 92.43 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.