Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/19270
Назив: | Selecting critical features for biomedical data classification |
Аутори: | Marovac, Ulfeta A. Memić, Lejlija M. Avdić, Aldina R. Djordjević, Natasa Z. Dolićanin, Zana Ć. Babic, Goran |
Датум издавања: | 2023 |
Сажетак: | In this paper, the application of machine learning methods on large data sets with numerous features was investigated, with a focus on the identification of critical features in order to reduce the data and produce more accurate results. The research discusses feature extraction techniques for classifying two biomedical data sets with 62 and 71 features, respectively. The results were compared and presented using four classification techniques. The acquired results demonstrate that the selected important features typically produce more accurate results, or at least the same results while reducing the size of the data set and making data collecting easier. |
URI: | https://scidar.kg.ac.rs/handle/123456789/19270 |
Тип: | conferenceObject |
DOI: | 10.46793/ICCBI23.136M |
Налази се у колекцијама: | Faculty of Medical Sciences, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
2nd-ICCBIKG- str 136-139.pdf | 401.66 kB | Adobe PDF | Погледајте |
Ова ставка је заштићена лиценцом Креативне заједнице