Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19293
Назив: Applied machine learning in exploring key features of crayfish populations
Аутори: Ðuretanović Simona
Jakovljević, Marija
Milošković, Aleksandra
Radojković, Nataša
Radenković, Milena
Simić, Vladica
Maguire, Ivana
Датум издавања: 2023
Сажетак: Uniform Manifold Approximation and Projection (UMAP) is a nonlinear dimension reduction technique based on manifold learning. It is specifically designed to achieve a balance between the global and local structure when embedding data points. We applied this method to morphometric features in populations of the noble crayfish, a freshwater species recognized as both a keystone species and an ecosystem engineer, as well as an indicator of good water quality, with unquestionable cultural and economic value to humans. Our results show that the CLL parameter most contributed to the differences and grouped the investigated specimens into seven clusters, along with ROL and ABL parameters. The parameters associated with the claws also exhibited a considerable influence on differentiation.
URI: https://scidar.kg.ac.rs/handle/123456789/19293
Тип: conferenceObject
DOI: 10.46793/ICCBI23.184DJ
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

347

Број преузимања

38

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
2nd-ICCBIKG- str 184-187.pdf451.65 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons