Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19592
Назив: Quantized neural adaptive finite-time preassigned performance control for interconnected nonlinear systems
Аутори: Song, Xiaona
Sun, Peng
Song, Shuai
Stojanović, Vladimir
Датум издавања: 2023
Сажетак: In this article, the issue of neural adaptive decentralized finite-time prescribed performance (FTPP) control is investigated for interconnected nonlinear time-delay systems. First, to bypass the potential singularity difficulties, the hyperbolic tangent function and the radial basis function neural networks are integrated to handle the unknown nonlinear items. Then, an adaptive FTPP control strategy is developed, where an improved fractional-order filter is applied to tackle the tremendous “amount of calculation” and eliminate the filter error simultaneously. Furthermore, by considering the impact of bandwidth limitation, an adaptive self-triggered control law is designed, in which the next trigger instant is determined through the current information. Ultimately, it can be demonstrated that the proposed control scheme not only guarantees that all states of the closed-loop system are semi-globally uniformly ultimately bounded, but also that the system output is confined to a small area in finite time. Two simulation examples are carried out to verify the effectiveness and superiority of the proposed method.
URI: https://scidar.kg.ac.rs/handle/123456789/19592
Тип: article
DOI: 10.1007/s00521-023-08361-y
ISSN: 0941-0643
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

334

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
NCAA_2023.pdf
  Ограничен приступ
88.54 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.