Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19593
Назив: Switching-Like Event-Triggered State Estimation for Reaction–Diffusion Neural Networks Against DoS Attacks
Аутори: Song, Xiaona
Wu, Nana
Song, Shuai
Stojanović, Vladimir
Датум издавања: 2023
Сажетак: In this paper, event-triggered state estimation for reaction–diffusion neural networks (RDNNs) subject to Denial-of-Service (DoS) attacks is investigated. A switching-like event-triggered strategy (SETS) is proposed to handle intermittent DoS attacks, meanwhile, alleviate the burden of the network while preserving the accepted performance of the considered systems. Moreover, to obtain the unknown state, the corresponding state estimator of RDNNs is constructed. Furthermore, by virtue of a piecewise Lyapunov–Krasovskii functional method, sufficient conditions are obtained to ensure the exponential stability of the closed-loop systems. Finally, a numerical simulation is provided to demonstrate the feasibility and advantages of the obtained results.
URI: https://scidar.kg.ac.rs/handle/123456789/19593
Тип: article
DOI: 10.1007/s11063-023-11189-1
ISSN: 1370-4621
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

333

Број преузимања

10

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
NPL_2023.pdf
  Ограничен приступ
71.29 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.