Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19724
Назив: MODELLING OF SURFACE ROUGHNESS AND TOOL WEAR DURING THE TURNING OF INCONEL 601 ALLOY USING ARTIFICIAL NEURAL NETWORKS
Аутори: Jovicic, Goran
Kanovic, Z.
Sokac, Mario
Santoši, Željko
Mitrovic, Slobodan
Simunovic, Goran
Vukelic, Djordje
Датум издавања: 2023
Сажетак: In this paper, the turning process of Inconel 601 is modeled. Turning process was performed with various cutting speeds, feeds, insert shapes, corner radius, rake angles and approach angles. After turning, the arithmetic mean surface roughness and flank wear were measured. For the measured values, the process is modeled using artificial neural networks. The generation of models with different architectures of artificial neural networks, was carried out through three training algorithms in order to determine the most adequate one. Validation of the model was performed through additional confirmation experiments. Prediction and measurement results were compared using percentage and absolute errors. The obtained data indicate that it is best to use the Levenberg-Marquardt algorithm for modeling the turning process using artificial neural networks.
URI: https://scidar.kg.ac.rs/handle/123456789/19724
Тип: conferenceObject
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

346

Број преузимања

47

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
ETIKUM_2023_1.pdf311.92 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons