Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/19807
Назив: | Fuzzy wavelet neural adaptive finite-time self-triggered fault-tolerant control for a quadrotor unmanned aerial vehicle with scheduled performance |
Аутори: | Song, Xiaona Wu, Chenglin Song, Shuai Stojanović, Vladimir Tejado, Inés |
Датум издавања: | 2024 |
Сажетак: | This paper focuses on fuzzy wavelet neural networks-based adaptive finite-time self-triggered fault-tolerant control design with assured tracking performance for a quadrotor unmanned aerial vehicle subject to unknown actuator faults. First, an improved finite-time performance function is integrated with the command-filtered backstepping control framework to assure the scheduled tracking performance, which can effectively constrain the transient fluctuations of the tracking error at fault occurrence. Then, two compensation mechanisms are developed to weaken the adverse impact induced by actuator faults and filter errors. Further, a fuzzy wavelet neural adaptive self-triggered fault-tolerant controller with guaranteed performance is designed to improve the fault insensitivity and tracking accuracy of the controlled vehicle, where the fuzzy wavelet neural networks are employed to approximate the unknown nonlinearities and the control signals are allowed to achieve irregular updating only when the pre-specified trigger protocol is violated. Stability analysis proves that the designed controller guarantees the attitude and position subsystems are practical finite-time stable, and the tracking errors are strictly confined to a preassigned region and never cross its allowed bounds. Finally, the validity of the developed control scheme is confirmed by the simulation results. |
URI: | https://scidar.kg.ac.rs/handle/123456789/19807 |
Тип: | article |
DOI: | 10.1016/j.engappai.2023.107832 |
ISSN: | 0952-1976 |
Налази се у колекцијама: | Faculty of Mechanical and Civil Engineering, Kraljevo |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
EAAI_2024.pdf Ограничен приступ | 361.31 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.