Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/20656
Назив: ADP-Based Prescribed-Time Control for Nonlinear Time-Varying Delay Systems With Uncertain Parameters
Аутори: Zhang, Zhixuan
Zhang, Kun
Xie, Xiangpeng
Stojanović, Vladimir
Датум издавања: 2024
Сажетак: In this paper, we investigate the problem of prescribed-time optimal control using reinforcement learning technology. Unlike finite/fixed-time control methods that only achieve stability within specified time bounds, we propose a prescribed-time adaptive dynamic programming (ADP) control approach that ensures both optimality and prescribed-time stability. To address the challenge of solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation in finite horizon, we construct an actor-critic neural network (NN) with a time-varying activation function. The novel weight update laws are derived from the system’s terminal error and the approximate error of the HJB equation. This derivation eliminates the need for knowledge of dynamic conditions while ensuring compliance with terminal constraints. Based on the proposed prescribed time stability criterion, the control scheme is proven to satisfy prescribed time stability while also ensuring optimal system performance index and bounded weights. We apply the designed control scheme in a time-varying delay system and simulation examples validate the efficacy of the strategy.
URI: https://scidar.kg.ac.rs/handle/123456789/20656
Тип: article
DOI: 10.1109/TASE.2024.3389020
ISSN: 1545-5955
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

344

Број преузимања

14

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
IEEE_TASE2024.pdf
  Ограничен приступ
563.23 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.