Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/20712
Назив: Application of the Random Forest Algorithm for Identifying Abnormal Patterns of Knee Joint Movement
Аутори: Prodanovic, Nikola
Dzunic, Dragan
Kočović, Vladimir
Djordjevic, Aleksandar
Prodanovic, Tijana
Petrovic Savic, Suzana
Devedzic, Goran
Датум издавања: 2024
Сажетак: Gait analysis through advanced technologies such as motion capture sensors and machine learning techniques enables a detailed study of body movement patterns, significantly contributing to a better understanding of health conditions and sports performance. The application of the Random Forest algorithm for identifying abnormal gait patterns, particularly in cases of anterior cruciate ligament injuries and knee osteoarthritis, has enabled precise classification of gait parameters. Using the OptiTrack system for data collection on both healthy individuals and those with injuries or diseases, a high accuracy model has been achieved in classification, expressed through metrics such as accuracy, precision, recall, and F1 Score. This approach provides efficient and objective classification of potential injuries or diseases, significantly enhancing the diagnosis, therapy, and prevention of knee joint injuries and diseases.
URI: https://scidar.kg.ac.rs/handle/123456789/20712
Тип: conferenceObject
DOI: 10.1109/DSPA60853.2024.10510126
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

391

Број преузимања

14

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
SPS_et al - DSPA-2024-ENG.pdf
  Ограничен приступ
687.83 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.