Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21071
Назив: Enhanced feature extraction YOLO industrial small object detection algorithm based on receptive-field attention and multi-scale features
Аутори: Tao, Hongfeng
Zheng, Yuechang
Wang, Yue
Qiu, Jier
Stojanović, Vladimir
Часопис: Measurement Science and Technology
Датум издавања: 2024
Сажетак: To guarantee the stability and safety of industrial production, it is necessary to regulate the behavior of employees. However, the high background complexity, low pixel count, occlusion and fuzzy appearance can result in a high leakage rate and poor detection accuracy of small objects. Considering the above problems, this paper proposes the Enhanced feature extraction-You Only Look Once (EFE-YOLO) algorithm to improve the detection of industrial small objects. To enhance the detection of fuzzy and occluded objects, the PixelShuffle and Receptive-Field Attention (PSRFA) upsampling module is designed to preserve and reconstruct more detailed information and extract the receptive-field attention weights. Furthermore, the multi-scale and efficient (MSE) downsampling module is designed to merge global and local semantic features to alleviate the problem of false and missed detection. Subsequently, the Adaptive Feature Adjustment and Fusion (AFAF) module is designed to highlight the important features and suppress background information that is not beneficial for detection. Finally, the EIoU loss function is used to improve the convergence speed and localization accuracy. All experiments are conducted on homemade dataset. The improved YOLOv5 algorithm proposed in this paper improves mAP@0.50 (mean average precision at a threshold of 0.50) by 2.8% compared to the YOLOv5 algorithm. The average precision and recall of small objects show an improvement of 8.1% and 7.5%, respectively. The detection performance is still leading in comparison with other advanced algorithms.
URI: https://scidar.kg.ac.rs/handle/123456789/21071
Тип: article
DOI: 10.1088/1361-6501/ad633d
ISSN: 0957-0233
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

322

Број преузимања

9

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
MST_2024a.pdf
  Ограничен приступ
47.79 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.