Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21123
Назив: Deep Neural Network Application in the Phase-Match Calibration of Gas–Microphone Photoacoustics
Аутори: Jordovic Pavlovic, Miroslava
Markushev, Dragan
Kupusinac, Aleksandar
Djordjevic, Katarina
Nesic, Mioljub
Galovic, Slobodanka
Popović, Marica
Часопис: International Journal of Thermophysics
Датум издавања: 2020
Сажетак: In this paper, a methodology for the application of neural networks in phase-match calibration of gas–microphone photoacoustics in frequency domain is developed. A two-layer deep neural network is used to determine, in real-time, reliably and accurately, the phase transfer function of the used microphone, applying the photoacoustic response of aluminum as reference material. This transfer function was used to correct the photoacoustic response of laser-sintered polyamide and to compare it with theoretical predictions. The obtained degree of correlation of the corrected and theoretical signal tells us that our method of phase-match calibration in photoacoustics can be generalized to a photoacoustic response coming from a solid sample made of different materials.
URI: https://scidar.kg.ac.rs/handle/123456789/21123
Тип: article
DOI: 10.1007/s10765-020-02650-7
ISSN: 0195-928X
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

180

Број преузимања

6

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
3_IJT_41_2020.pdf
  Ограничен приступ
59.79 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.