Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21550
Назив: Forecasting demand trends in automotive industry: Comparative analysis of exponential smoothing and regression analysis
Аутори: Tadić, Danijela
Komatina, Nikola
Savković, Marija
Датум издавања: 2024
Сажетак: This study analyzes demand trends using statistical methods, specifically exponential smoothing and regression analysis, applied to data from an automotive supply chain company. The analysis of order records for the first 28 weeks of the year reveals that exponential smoothing, with a smoothing parameter of α=0.5, provides more accurate forecasts compared to regression analysis. This conclusion is supported by lower forecast error values (MAPE, MSE, and MAD) for the exponential smoothing method. The findings suggest that exponential smoothing is a more reliable tool for demand forecasting in this context.
URI: https://scidar.kg.ac.rs/handle/123456789/21550
Тип: conferenceObject
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

19

Број преузимања

1

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Zbornik radova COMETa2024-568-575.pdf348.96 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons