Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21733
Назив: Structured query language injection detection with natural language processing techniques optimized by metaheuristics
Аутори: Jokic, Aleksandar
Jovic, Nikola
Gajic, Vuk
Svičević, Marina
Pavković, Miloš
Petrovic, Aleksandar
Датум издавања: 2024
Сажетак: This research focuses on the detection of Structured Query Language (SQL) injection intrusion detection. This problem has gained significance due to the widespread use of SQL in different systems, as well as for the numerous versions of attacks that are performable by using this technique. This work aims to propose a robust solution for the detection of such attacks by applying artificial intelligence (AI). The data is preprocessed by a Bidirectional Encoder Representations from Transformers (BERT), while the predictions are made by the Extreme Gradient Boosting (XGBoost) algorithm. The XGBoost is a powerful predictor if optimized correctly. Hyperparameters are optimized by an improved version of the Crayfish Optimization Algorithm (COA) hybridized with the Genetic Algorithm (GA). The proposed solution is tested against highperforming metaheuristics in which it achieved favorable performance.
URI: https://scidar.kg.ac.rs/handle/123456789/21733
Тип: bookPart
DOI: 10.2991/978-94-6463-482-2_11
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

73

Број преузимања

2

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Structuredquerylanguage.pdf425.17 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.