Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21806
Назив: Visual Mental Workload Assessment from EEG in Manual Assembly Task
Аутори: Pušica, Miloš
Caiazzo, Carlo
Djapan, Marko
Savković, Marija
Leva, Maria Chiara
Датум издавања: 2023
Сажетак: The use of electroencephalography (EEG) to assess mental workload (MWL) has been the subject of many studies. Also, there have been many efforts to achieve task-independent MWL estimation, with the most recent being in the field of machine learning (ML). However, the estimation still remains highly dependent on the specific task used for ML model training. Furthermore, there is a shortage of research that is focused on developing an estimator that would function for multiple different tasks within a specific task domain. The creation of the dataset described in this work is a step towards developing task-independent ML estimator within the scope of visual cognition. An experiment meant for the ML model training is designed to collect EEG signals for different levels of MWL during manual assembly that involves assembly instructions to be visually processed by operators. It includes idle state of an operator, as well as two different complexity levels of the visual instructions. EEG data is collected using wireless EEG-recording cap that can be easily incorporated in everyday assembly line environments.
URI: https://scidar.kg.ac.rs/handle/123456789/21806
Тип: conferenceObject
DOI: 10.3850/978-981-18-8071-1_P667-cd
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

336

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
ESREL_2023.pdf
  Ограничен приступ
210.36 kBAdobe PDFПогледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons