Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/21917
Назив: | Anti-Gaussian quadrature rules related to multiple orthogonal polynomials |
Аутори: | Petrovic, Nevena |
Датум издавања: | 2024 |
Сажетак: | Multiple orthogonal polynomials represent one of the generalizations of orthogonal polynomials, in the sense that they satisfy orthogonality with respect to r different weight functions simultaneously. Anti-Gaussian quadrature formulas on the space of algebraic polynomials were introduced in 1996 by Laurie ([1]). These quadrature formulas have the property that their error is equal in magnitude but of opposite sign to the corresponding Gaussian quadrature rules. Here, we analyze a set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense (see [2]), which refers to the observed multiply orthogonal polynomials, and define a set of averaged quadrature formulas. |
URI: | https://scidar.kg.ac.rs/handle/123456789/21917 |
Тип: | conferenceObject |
Налази се у колекцијама: | Faculty of Mechanical and Civil Engineering, Kraljevo |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
ATA_2024_Petrovic_N.pdf | 156.02 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.