Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21930
Назив: Composite neural learning-based adaptive actuator failure compensation control for full-state constrained autonomous surface vehicle
Аутори: Song, Shuai
Jiang, Yu
Song, Xiaona
Stojanović, Vladimir
Часопис: Neural Computing and Applications
Датум издавања: 2025
Сажетак: This article studies composite neural learning-based adaptive failure compensation control issues for the autonomous surface vehicle with full-state constraints. Initially, the control strategy solve the problems of computational complexity and state constraints and eliminate the negative effect of filter error on tracking performance by integrating with the command-filtered backstepping technique and barrier Lyapunov functions. Then, a composite neural learning framework is established, where the effect caused by approximation error on tracking accuracy can be efficiently reduced by constructing the serial-parallel estimation model to obtain the estimations of the system states. Furthermore, an adaptive resilient trajectory tracking controller is designed, which can ensure that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded satisfying the preset constraints even if the expected actuator faults occur suddenly. Finally, the feasibility and superiority of the designed control strategy are clarified by simulation results.
URI: https://scidar.kg.ac.rs/handle/123456789/21930
Тип: article
DOI: 10.1007/s00521-024-10651-y
ISSN: 0941-0643
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

29

Број преузимања

5

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
NCAA_2025.pdf
  Ограничен приступ
89.61 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.