Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22058
Назив: On the product of periodic distributions. Product in shift-invariant spaces
Аутори: Aksentijević, Aleksandar
Aleksić, Suzana
Pilipović, Stevan
Часопис: Filomat
Датум издавања: 2024
Сажетак: We connect through the Fourier transform shift-invariant Sobolev type spaces Vs ⊂ Hs , s ∈ R, and the spaces of periodic distributions and analyze the properties of elements in such spaces with respect to the product. If the series expansions of two periodic distributions have compatible coefficient estimates, then their product is a periodic tempered distribution. We connect product of tempered distributions with the product of shift-invariant elements of Vs . The idea for the analysis of products comes from the Hormander’s description of the Sobolev type wave front in connection with the product of distributions. ¨ Coefficient compatibility for the product of f and 1 in the case of ”good” position of their Sobolev type wave fronts is proved in the 2-dimensional case. For larger dimension it is an open problem because of the difficulties on the description of the intersection of cones in dimension d ⩾ 3.
URI: https://scidar.kg.ac.rs/handle/123456789/22058
Тип: article
DOI: 10.2298/FIL2423011A
ISSN: 0354-5180
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

175

Број преузимања

9

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Filomat.pdf244.04 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons