Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22206
Назив: Improvement of Neural Networks Applied to Photoacoustic Signals of Semiconductors with Added Noise
Аутори: Djordjevic, Katarina
Galovic, Slobodanka
Jordovic Pavlovic, Miroslava
Ćojbašić, Žarko
Markushev, Dragan
Часопис: Silicon
Датум издавања: 2021
Сажетак: This paper provides an overview of the characteristics of different neural networks trained on the same theoretical database of ntype silicon photoacoustic signals. By adding different levels of random Gaussian noise to the training input signals, two important goals were achieved. First, the optimal level of noise was found which significantly shortens the training networks with minimal loss of accuracy of its predictions. Second, the termination criteria of networks training were activated to avoid overtraining, i.e., networks generalization was performed. A networks efficiency analysis was performed on both theoretical and experimental photoacoustic signals, resulting in a selection of one neural network that is optimal to the performance requirements of the real experiment. It is indicated that the application of such trained networks is more reliable on thicker semiconductors, whose thickness is greater than the value of the carrier diffusion length in the investigated sample.
URI: https://scidar.kg.ac.rs/handle/123456789/22206
Тип: article
DOI: 10.1007/s12633-020-00606-y
ISSN: 1876-990X
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

15

Број преузимања

2

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Silicon_13_2959.pdf
  Ограничен приступ
105.02 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.