Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22352
Назив: A Generic Single-Source Domain Generalization Framework for Fault Diagnosis via Wavelet Packet Augmentation and Pseudo-Domain Generation
Аутори: Sun, Yawei
Tao, Hongfeng
Ni, Yuanzhi
Stojanović, Vladimir
Часопис: IEEE Internet of Things Journal
Датум издавања: 2025
Сажетак: During real-time production in industrial Internet of Things systems, equipment changes its operating speed due to changing operating conditions. And dynamic speed changes of rotating machinery under fluctuating workloads often lead to domain changes of vibration signals, which will directly lead to degradation of fault diagnostic model performance. Furthermore, the acquisition of data from multiple domains in real industrial scenarios is challenging due to the expense of collecting data from all possible working conditions. Consequently, applying diagnostic models trained using a single-source domain directly to an unknown target domain is a very challenging single domain generalization problem. Therefore, a generic single-source domain generalization framework via wavelet packet augmentation and pseudo-domain generation for fault diagnosis under unknown operating conditions is proposed in this paper. Pseudo-domain generation involves augmenting single-source domain by integrating data generetion model, thereby enhancing prediction accuracy. Furthermore, a wavelet packet augmentation method is proposed. Initially, the original signal is decomposed to obtain high and low frequency information. Subsequently, the high and low frequency information within the batch are linearly interpolated, respectively. Consequently, the interpolated high and low frequency information is then reconstructed to yield enhanced samples. The experimental results on four datasets show that the proposed framework can effectively improve the robustness of the generalization ability of fault diagnosis under unknown operating environments.
URI: https://scidar.kg.ac.rs/handle/123456789/22352
Тип: article
DOI: 10.1109/JIOT.2025.3573752
ISSN: 2327-4662
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

92

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
IoT_2025a.pdf
  Ограничен приступ
114.05 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.