Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22534
Назив: Iterative learning control optimization strategy for feedback control systems with varying tasks
Аутори: Chen, Fangmei
Tao, Hongfeng
Zhuang, Zhihe
Paszke, Wojciech
Stojanović, Vladimir
Часопис: Mathematical Modelling and Control
Датум издавања: 2025
Сажетак: Iterative learning control (ILC) combined with feedback control is a common approach to repetitive systems with external disturbances, as it enables high tracking performance and guarantees time-domain stability. However, the variation of the reference trajectory in practical repetitive operations often degrades the control performance. To this end, this paper develops a feedback-based ILC to transfer the experience of repetitively operating a certain task to a brand new task without restriction on its time duration. This two-dimensional (2-D) design employs a parallel structure, where the ILC and the feedback controller are designed separately to achieve performance optimization. Then, the feedback plus feedforward controller is integrated into a new feedback controller with learning-based parameters. The convergence and robustness analysis of the design is given. Finally, numerical simulation experiments of a DC motor position control system verify the proposed scheme's effectiveness and robustness.
URI: https://scidar.kg.ac.rs/handle/123456789/22534
Тип: article
DOI: 10.3934/mmc.2025022
ISSN: 2767-8946
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

12

Број преузимања

1

Датотеке у овој ставци:
Датотека ВеличинаФормат 
MMC2025.pdf
  Ограничен приступ
205.59 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.