Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22715
Назив: Neural Network-Based Optimization of Repair Rate Estimation in Performance-Based Logistics Systems
Аутори: Dejanović, Milan
Panić, Stefan
Kontrec, Nataša
Djosic, Danijel
Milojević, Saša
Часопис: Information
Датум издавања: 2025
Сажетак: Performance-Based Logistics (PBL) frameworks prioritize system availability by optimizing maintenance strategies, with repair rate estimation playing a critical role in predictive maintenance planning. This study proposes a machine learning-based approach for repair rate prediction, leveraging fully connected neural networks (FCNNs) and Long Short-Term Memory (LSTM) networks trained on repair rate samples generated from a stochastic model. The FCNN estimates maximum repair rates, while the LSTM predicts minimum repair rates, capturing both steady-state and sequential dependencies in repair rate variations. By eliminating the need for complex mathematical formulations, the proposed methodology provides a scalable and computationally efficient alternative to traditional stochastic models. Extensive performance evaluations demonstrate that the neural networks achieve higher accuracy and lower computational costs compared to stochastic approaches, making them well-suited for real-time predictive maintenance applications. This research enhances decision-making in maintenance planning, optimizes resource allocation, and improves overall system reliability within PBL frameworks.
URI: https://scidar.kg.ac.rs/handle/123456789/22715
Тип: article
DOI: 10.3390/info16121031
ISSN: 2078-2489
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

3

Број преузимања

2

Датотеке у овој ставци:
Датотека ВеличинаФормат 
information-16-01031-with-cover.pdf1.22 MBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.