Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22729
Назив: A Survey of Reinforcement Learning Approaches for Tuning Particle Swarm Optimization
Аутори: Milicevic, Bogdan
Milovanović, Vladimir
Часопис: Book of Proceedings International Conference on Chemo and BioInformatics (3 ; 2025 ; Kragujevac)
Датум издавања: 2025
Сажетак: Particle Swarm Optimization (PSO) remains a popular, simple, and strong baseline for numerical optimization, yet its performance depends critically on a small set of hyper-parameters (e.g., inertia weight w and cognitive and social coefficients c1, c2) and on structural design choices (e.g., topology, velocity clamps). Over the last decade, reinforcement learning (RL) has emerged as a principled, data-driven way to adapt these design choices online—either by directly controlling parameters, reshaping swarm interactions, selecting variation operators, or transferring control policies across runs. This survey systematizes RL–for–PSO tuning along four families: (1) direct parameter control, (2) topology/structure control, (3) operator/strategy selection, and (4) cross-run memory and transfer. We highlight representative methods—including tabular Q-learning, Deep Q-Networks (DQN), deterministic policy gradients (DDPG), and hybrid RL–PSO schemes—summarize empirical evidence, and distill practical design patterns (state, action, reward, and training protocols). We conclude with open challenges in stability, sample efficiency, safety-constrained control, and reproducible benchmarking.
URI: https://scidar.kg.ac.rs/handle/123456789/22729
Тип: conferenceObject
DOI: 10.46793/ICCBIKG25.198M
Налази се у колекцијама:Institute for Information Technologies, Kragujevac

Број преузимања

2

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
199-202-Milicevic.pdf626.72 kBAdobe PDFПогледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons