Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22748
Назив: A Reproducible Pipeline for Preprocessing and Annotation of scRNA-seq Data Using Seurat and Scanpy
Аутори: Kovačević, Vladimir
Živić, Andreja
Ivanović, Miloš
Milivojević, Nevena
Živanović, Marko
Часопис: Book of Proceedings International Conference on Chemo and BioInformatics (3; 2025; Kragujevac)
Датум издавања: 2025
Сажетак: Single-cell RNA sequencing (scRNA-seq) is now a versatile platform for the dissection of cellular heterogeneity across biological conditions. Standardization of preprocessing and annotation pipelines is still to come. We present here a reproducible and modular workflow that combines the strengths of Seurat (R) and Scanpy (Python) to preprocess, annotate, and prepare scRNA-seq data for downstream analysis. The workflow begins with raw count matrices from greater than one biological replicates or conditions. Utilizing Seurat, we perform initial quality control, low-quality cell removal, and reference-based cell type annotation from a reference scRNA-seq atlas. The annotated data is re-coded to AnnData format for an easy transition to the Scanpy framework. In Scanpy, additional operations such as normalization, feature selection, dimensionality re- duction (PCA, UMAP), and checking for batch effects are performed. The output data structure is conducive to flexible downstream analysis, including differential expression and pathway enrichment. This pipeline ensures interoperability, reproducibility, and transparency and is particu- larly suited for group environments and comparative analysis. All of the preprocessing is thoroughly documented and parameterized to be straightforwardly modifiable for a range of datasets and research questions.
URI: https://scidar.kg.ac.rs/handle/123456789/22748
Тип: conferenceObject
DOI: 10.46793/ICCBIKG25.371K
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

4

Број преузимања

2

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
374-378-Kovacevic.pdf807.41 kBAdobe PDFПогледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons