Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22783
Назив: AI based Prediction Model and Influential Factors for Hypersensitivity in Dental Implants made of Ti alloys
Аутори: Grujovic, Marija
Djordjevic, Aleksandar
Abadic, Nebojsa
Jovicic, Gordana
Zivic, Fatima
Датум издавања: 2025
Сажетак: This paper analysed influential factors governing the occurrence of hypersensitivity issues in patients with dental implants made of titanium (Ti) alloys. We presented tribological mechanisms affecting wear and fatigue in Ti alloys, outlined a method for identifying initial fatigue damage, and analysed AI-supported computational model to predict wear using experimentally obtainable input parameters. Wear debris from Ti alloy implant can trigger immune response. Fatigue cracks, driven by the material's behavior under long-term cyclic loading and harsh dental conditions, are identified using Small Crack Theory, an essential procedure for critical small-scale structures like Ti alloy implants. Various factors influence the formation of nano/micro-cracks and wear debris in implants, while computational models and emerging IoT-based in vivo sensing offer valuable tools for predicting loading regimes and enabling real-time, customised implant design.
URI: https://scidar.kg.ac.rs/handle/123456789/22783
Тип: conferenceObject
DOI: 10.46793/ICCBIKG25.403G
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

12

Број преузимања

2

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
405-408-Grujovic.pdf903.61 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons