Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22817
Назив: ML-Based Classification Models for Assessing Workpiece Dimensional Accuracy
Аутори: Stepanić, Pavle
Dučić, Nedeljko
Baralić, Jelena
Stankovic, Nebojsa
Damnjanovic D.
Grković, Vladan
Часопис: Studies in Informatics and Control
Датум издавања: 2025
Сажетак: The integration of machine learning (ML) into manufacturing processes has significantly improved predictive maintenance and quality assessment, particularly in Computer Numerical Control (CNC) machining. This study presents the development and evaluation of four types of ML classification models, namely Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Naïve Bayes, and Artificial Neural Network (ANN) models for assessing the dimensional accuracy for workpieces produced via step drilling on a horizontal CNC machining center. Vibration signal features were extracted during the machining process, resulting in 27 statistical features per workpiece. The models were trained on a dataset from 2019 and tested on an independent dataset from 2021 in order to evaluate their temporal robustness. The Medium Gaussian SVM model and the ANN model with the 27-21-2 architecture achieved the highest training accuracy, namely 98.77%, and the latter showed a perfect generalization ability with a 100% accuracy for the 2021 test dataset. These findings confirm the suitability of ML-based models for quality assessment in the context of machining processes, and their potential for integration into real-time smart manufacturing systems.
URI: https://scidar.kg.ac.rs/handle/123456789/22817
Тип: article
DOI: 10.24846/v34i4y202502
ISSN: 1220-1766
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

36

Број преузимања

8

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Art._2_Issue_4_2025.pdf2.21 MBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.