Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/22900
Назив: Bridging the Gap: Physics-Driven Deep Learning for Heat Transfer Model
Аутори: Geroski, Tijana
Pavić, Ognjen
Dašić, Lazar
Filipovic, Nenad
Часопис: Disruptive Information Technologies for a Smart Society: Proceedings of the 14th International Conference on Information Society and Technology (ICIST).
Датум издавања: 2024
Сажетак: The potential of Physics-Informed Neural Networks (PINNs) in addressing intricate real-world challenges exceeds the capabilities of traditional deep learning methods by merging data-driven and physics-driven approaches. PINNs offer advantages in handling computationally and temporally demanding problems that were conventionally approached using techniques like Finite Difference Method (FDM). This study focuses on analyzing heat transfer within cardiac tissue to deepen our understanding of the mechanism from ablation catheters or implants to surrounding blood and tissue layers. Accurately estimating temperature increases is crucial for designing reliable catheters and mitigating overheating risks. By defining the geometry and boundary conditions to simulate catheter-induced heating, we compare the results with state-of-the-art solutions such as FDM. PINN models demonstrate high accuracy, validated against FDM, with notable benefits including reduced reliance on handcrafted features, adaptability to complex domains, and efficient training and inference. These results can guide future investigations of the behavior of cardiac tissue under varied conditions.
URI: https://scidar.kg.ac.rs/handle/123456789/22900
Тип: conferenceObject
DOI: 10.1007/978-3-031-71419-1_14
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

11

Број преузимања

1

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
ICIST_TGeroski_2024_final.pdf
  Ограничен приступ
322.55 kBAdobe PDFПогледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons