Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/23043
Назив: Predicting Discus Hernia from MRI Images Using Deep Transfer Learning
Аутори: Geroski, Tijana
Rankovic, Vesna
Milovanović, Vladimir
Kovacevic, Vojin
Rasulic, Lukas
Filipovic, Nenad
Датум издавања: 2023
Сажетак: The capacity to quicky detect and classify discus hernia in individuals means faster access to adequate therapy. Standard way to diagnose the patients is through magnetic resonance images (MRI), which uses axial and sagittal view. Early research revealed that transfer learning is useful approach when it comes to small datasets. We investigate the use of deep learning models to identify level and side of discus hernia in patients from MRI images. Dataset used consisted of combined publicly accessible and restricted local database of 1169 MRI images in sagittal view and 557 images in axial view. A board-certified radiologist was able to manually classify images which was used as a golden standard. Several well-known convolutional neural networks were used in combination with transfer learning. The results reveal competitive accuracy, as well as other metrics such as sensitivity, specificity, precision etc. Although the acquired performance is quite positive, additional investigation on a larger dataset is necessary to get more robust conclusions.
URI: https://scidar.kg.ac.rs/handle/123456789/23043
Тип: conferenceObject
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

13

Број преузимања

1

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
AAI_chapter_TGeroski.pdf
  Ограничен приступ
346.56 kBAdobe PDFПогледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons