Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/8381
Назив: On involutes of order k of a null cartan curve in minkowski spaces
Аутори: Hanif M.
Hou Z.
Nešović, Emilija
Датум издавања: 2019
Сажетак: © 2019, University of Nis. All rights reserved. In this paper, we define an involute and an evolving involute of order k of a null Cartan curve in Minkowski space En for n ≥ 3 and 1 ≤ k ≤ n − 1. In relation to that, we prove that if a null Cartan helix has 1 a null Cartan involute of order 1 or 2, then it is Bertrand null Cartan curve and its involute is its Bertrand mate curve. In particular, we show that Bertrand mate curve of Bertrand null Cartan curve can also be a non-null curve and find the relationship between the Cartan frame of a null Cartan curve and the Frenet or the Cartan frame of its non-null or null Cartan involute of order 1 ≤ k ≤ 2. We show that among all null Cartan curves in E3, only the null Cartan cubic has two families of involutes of order 1, one of which 1 lies on B-scroll. We also give some relations between involutes of orders 1 and 2 of a null Cartan curve in Minkowski 3-space. As an application, we show that involutes of order 1 of a null Cartan curve in E3 1 evolving according to null Betchov-Da Rios vortex filament equation, generate timelike Hasimoto surfaces.
URI: https://scidar.kg.ac.rs/handle/123456789/8381
Тип: article
DOI: 10.2298/FIL1908295H
ISSN: 0354-5180
SCOPUS: 2-s2.0-85078296395
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

452

Број преузимања

42

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.2298-FIL1908295H.pdf402.3 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons