Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/8677
Назив: | Monitoring and neural network modeling of cutting temperature during turning hard steel |
Аутори: | Taric M. Kovac P. Nedic, Bogdan Rodic D. Jesic D. |
Датум издавања: | 2018 |
Сажетак: | © 2018 Serbian Society of Heat Transfer Engineers. In this study, cutting tools average temperature was investigated by using thermal imaging camera of FLIR E50-type. The cubic boron nitride inserts with zero and negative rake angles were taken as cutting tools and round bar of EN 90MnCrV8 hardened steel was used as the workpiece. Since the life of the cutting tool material strongly depends upon cutting temperature, it is important to predict heat generation in the tool with intelligent techniques. This paper proposes a method for the identification of cutting parameters using neural network. The model for determining the cutting temperature of hard steel, was trained and tested by using the experimental data. The test results showed that the proposed neural network model can be used successfully for machinability data selection. The effect on the cutting temperature of machining parameters and their interactions in machining were analyzed in detail and presented in this study. |
URI: | https://scidar.kg.ac.rs/handle/123456789/8677 |
Тип: | article |
DOI: | 10.2298/TSCI170606210T |
ISSN: | 0354-9836 |
SCOPUS: | 2-s2.0-85063796474 |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
10.2298-TSCI170606210T.pdf | 2.47 MB | Adobe PDF | Погледајте |
Ова ставка је заштићена лиценцом Креативне заједнице