Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/8677
Назив: Monitoring and neural network modeling of cutting temperature during turning hard steel
Аутори: Taric M.
Kovac P.
Nedic, Bogdan
Rodic D.
Jesic D.
Датум издавања: 2018
Сажетак: © 2018 Serbian Society of Heat Transfer Engineers. In this study, cutting tools average temperature was investigated by using thermal imaging camera of FLIR E50-type. The cubic boron nitride inserts with zero and negative rake angles were taken as cutting tools and round bar of EN 90MnCrV8 hardened steel was used as the workpiece. Since the life of the cutting tool material strongly depends upon cutting temperature, it is important to predict heat generation in the tool with intelligent techniques. This paper proposes a method for the identification of cutting parameters using neural network. The model for determining the cutting temperature of hard steel, was trained and tested by using the experimental data. The test results showed that the proposed neural network model can be used successfully for machinability data selection. The effect on the cutting temperature of machining parameters and their interactions in machining were analyzed in detail and presented in this study.
URI: https://scidar.kg.ac.rs/handle/123456789/8677
Тип: article
DOI: 10.2298/TSCI170606210T
ISSN: 0354-9836
SCOPUS: 2-s2.0-85063796474
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

546

Број преузимања

32

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.2298-TSCI170606210T.pdf2.47 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons