Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/9115
Назив: Optimization of chemical composition in the manufacturing process of flotation balls based on intelligent soft sensing
Аутори: Ducic N.
Ćojbašić, Žarko
Slavkovic R.
Jordović B.
Purenovic, Jelena
Датум издавања: 2016
Сажетак: © 2016 Association of Chemists and Chemical Engineers of Serbia. All rights reserved. This paper presents an application of computational intelligence in modeling and optimization of parameters of two related production processes-ore flotation and production of balls for ore flotation. It is proposed that desired chemical composition of flotation balls (Mn = 0.69%; Cr = 2.247%; C = 3.79%; Si = 0.5%), which ensures minimum wear rate (0.47 g/kg) during copper milling is determined by combining artificial neural network (ANN) and genetic algorithm (GA). Based on the results provided by neuro-genetic combination, a second neural network was derived as an intelligent soft sensor in the process of white cast iron production. The proposed ANN 12-16-12-4 model demonstrated favorable prediction capacity, and can be recommended as a ‘intelligent soft sensor’ in the alloying process intended for obtaining favorable chemical composition of white cast iron for production of flotation balls. In the development of intelligent soft sensor data from the two real production processes were used.
URI: https://scidar.kg.ac.rs/handle/123456789/9115
Тип: article
DOI: 10.2298/HEMIND150715068D
ISSN: 0367-598X
SCOPUS: 2-s2.0-85011797650
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

485

Број преузимања

29

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.2298-HEMIND150715068D.pdf3.57 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons