Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/9816
Назив: Neural network model predictive control of nonlinear systems using genetic algorithms
Аутори: Rankovic, Vesna
Radulović, Jasna
Grujovic, Nenad
Divac, Dejan
Датум издавања: 2012
Сажетак: In this paper the synthesis of the predictive controller for control of the nonlinear object is considered. It is supposed that the object model is not known. The method is based on a digital recurrent network (DRN) model of the system to be controlled, which is used for predicting the future behavior of the output variables. The cost function which minimizes the difference between the future object outputs and the desired values of the outputs is formulated. The function ga of the Matlab's Genetic Algorithm Optimization Toolbox is used for obtaining the optimum values of the control signals. Controller synthesis is illustrated for plants often referred to in the literature. Results of simulations show effectiveness of the proposed control system. © 2006-2012 by CCC Publications.
URI: https://scidar.kg.ac.rs/handle/123456789/9816
Тип: article
DOI: 10.15837/ijccc.2012.3.1394
ISSN: 1841-9836
SCOPUS: 2-s2.0-84862680337
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

607

Број преузимања

205

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.15837-ijccc.2012.3.1394.pdf191.43 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons