Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/15649
Назив: An Optimal Iterative Learning Control Approach for Linear Systems With Nonuniform Trial Lengths Under Input Constraints
Аутори: Zhuang Z.
Tao H.
Chen, Yiyang
Stojanović, Vladimir
Paszke, Wojciech
Датум издавања: 2022
Сажетак: In practical applications of iterative learning control (ILC), the repetitive process may end up early by accident during the performance improvement along the trial axis, which yields the nonuniform trial length problem. For such practical systems, input signals are usually constrained because of some certain physical limitations. This article proposes an optimal ILC algorithm for linear time-invariant multiple-input–multiple-output (MIMO) systems with nonuniform trial lengths under input constraints. The optimal ILC framework is specifically modified for the nonuniform trial length problem, where the primal–dual interior point method is introduced to deal with the input constraints. Hence, the constraint handling capability are improved compared with the conventional counterparts for nonuniform trial lengths. Also, the monotonic convergence property of the proposed optimal ILC algorithm is obtained in the sense of mathematical expectation. Finally, the effectiveness of the proposed algorithm is verified on the numerical simulation of a mobile robot.
URI: https://scidar.kg.ac.rs/handle/123456789/15649
Тип: article
DOI: 10.1109/TSMC.2022.3225381
ISSN: 2168-2216
SCOPUS: 2-s2.0-85144747016
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

406

Број преузимања

13

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.