Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/15649
Title: An Optimal Iterative Learning Control Approach for Linear Systems With Nonuniform Trial Lengths Under Input Constraints
Authors: Zhuang Z.
Tao H.
Chen, Yiyang
Stojanović, Vladimir
Paszke, Wojciech
Issue Date: 2022
Abstract: In practical applications of iterative learning control (ILC), the repetitive process may end up early by accident during the performance improvement along the trial axis, which yields the nonuniform trial length problem. For such practical systems, input signals are usually constrained because of some certain physical limitations. This article proposes an optimal ILC algorithm for linear time-invariant multiple-input–multiple-output (MIMO) systems with nonuniform trial lengths under input constraints. The optimal ILC framework is specifically modified for the nonuniform trial length problem, where the primal–dual interior point method is introduced to deal with the input constraints. Hence, the constraint handling capability are improved compared with the conventional counterparts for nonuniform trial lengths. Also, the monotonic convergence property of the proposed optimal ILC algorithm is obtained in the sense of mathematical expectation. Finally, the effectiveness of the proposed algorithm is verified on the numerical simulation of a mobile robot.
URI: https://scidar.kg.ac.rs/handle/123456789/15649
Type: article
DOI: 10.1109/TSMC.2022.3225381
ISSN: 2168-2216
SCOPUS: 2-s2.0-85144747016
Appears in Collections:Faculty of Mechanical and Civil Engineering, Kraljevo

Page views(s)

487

Downloads(s)

13

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.