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Abstract: Managing defects in agricultural fruit processing is crucial for maintaining quality and
sustainability in the fruit market. This study explores the use of edge devices, web applications, and
machine vision algorithms to improve defect reporting and classification in the strawberry processing
sector. A software solution was developed to utilize edge devices for detecting and managing
strawberry defects by integrating web applications and machine vision algorithms. The study shows
that integrating built-in cameras and machine vision algorithms leads to improved fruit quality and
processing efficiency, allowing for better identification and response to defects. Tested in small organic
and conventional strawberry processing enterprises, this solution digitizes defect-reporting systems,
enhances defect management practices, and offers a user-friendly, cost-effective technology suitable
for wider industry adoption. Ultimately, implementing this software enhances the organization and
efficiency of fruit production, resulting in better quality control practices and a more sustainable fruit
processing industry.

Keywords: smart agriculture; web applications; machine vision; fruit production; defect management;
strawberry classification

1. Introduction

Modern agricultural companies prioritize producing higher-quality products and
meeting changing consumer needs to stay competitive. Achieving these goals requires
constant monitoring, control, and improvement of processing procedures for both organic
and conventional products. This demands the implementation of effective quality manage-
ment practices and modern technology [1]. Despite the integration of quality management
initiatives, the dynamic nature of agricultural markets presents significant obstacles that
surpass the effectiveness of traditional quality management strategies. These challenges
notably include the classification of fruit products and potential defects they may exhibit.
Additionally, the traditional manual approach in this field is associated with repetitive,
physically demanding work. For example, quality control and food classification may take
place in environments with low temperatures and other challenging conditions.

As a cornerstone of modern agriculture, the strawberry industry greatly emphasizes
product quality and profitability [2,3]. A significant criterion in assessing strawberry
grade is the presence of defects, such as mold [4,5], which stands as one of the more
prevalent issues in the strawberry domain. Strawberry defect detection relies heavily
on manual labor, characterized by extended work hours, elevated costs, and suboptimal
efficiency. Particularly concerning strawberry mold, traditional detection methods are
time-consuming and ineffective.

In recent years, there has been an increase in the use of machine vision technologies
in agriculture, leading to the development and deployment of various neural network
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architectures [6,7]. Song et al. [8] created a system using You Only Look Once (YOLO)
to detect citrus diseases, such as Citrus Canker and Citrus Greening, allowing for better
disease management. Qin et al. [9] introduced Ag-YOLO, an inexpensive object detection
system specifically designed for precise spraying in precision agriculture using unmanned
aerial vehicles (UAVs). This system addresses the challenges of effective pesticide appli-
cation in small fields and rugged terrains, such as mountainous areas, by providing a
cost-effective and adaptable onboard computer vision solution. Lippi et al. [10] developed
a pest detection system for hazelnut orchards, achieving 94.5% average precision using a
YOLO-based CNN and deploying the system on an NVIDIA Jetson Xavier for real-time
processing. Junos et al. [11] focused on enhancing productivity and reducing operational
costs in crop harvesting systems. They proposed an optimized YOLO-based object de-
tection model, YOLO-P, specifically tailored for automated crop harvesting systems. The
model aims to detect and localize fresh fruit bunches, grabbers, and palm trees in palm oil
plantations under various environmental conditions, providing essential visual information
for the development of intelligent automated harvesting systems. The model shows a high
accuracy of 98.91% in identifying fresh fruit bunches of various maturities, indicating its
robustness and effectiveness for real-world applications in palm oil plantations. In a study
by Mirhaji et al. [12], the use of YOLO models for fruit detection and load estimation in an
orange orchard was investigated, emphasizing the importance of accurate yield estimation
for effective market and resource planning in precision agriculture. The findings highlight
the effectiveness of YOLO models in providing practical solutions for detecting and esti-
mating orange fruit yields, suggesting a combined imaging approach to improve accuracy
for varying canopy densities, with an overall yield estimation error of +9.19%. Wang
et al. [13] introduced DSE-YOLO (Detail-Semantics Enhancement YOLO) as a solution for
multi-stage strawberry detection, crucial for estimating crop yields and facilitating robotic
harvesting in modern agriculture. The model uses novel loss functions, Exponentially En-
hanced Binary Cross Entropy (EBCE) and Double-Enhanced Mean Square Error (DEMSE)
to address the class imbalance. Experimental results show DSE-YOLO’s superiority over
existing methods, achieving a mean average precision (mAP) of 86.58% and an F1 score
of 81.59%. This model effectively detected all stages of strawberry fruits in natural scenes,
providing a solid theoretical foundation for automated harvesting and monitoring systems.
Cuong et al. [14] enhanced Tiny YOLO-v4 for detecting pineapple ripeness, achieving a
recognition rate of 98.26% and demonstrating applicability in large-scale plantations. The
following innovative studies have leveraged YOLO-based algorithms to enhance precision
agriculture. Zhang et al. [15] enhanced YOLOv5 to detect unopened cotton bolls, address-
ing challenges like occlusions and varying growth stages, outperforming YOLOv3, SSD,
and Faster R-CNN. Tian et al. [15] introduced MD-YOLO for pest detection in precision
agriculture, achieving an email_1 of 86.2%, F1 score of 79.1%, and IoU of 88.1% using
DenseNet blocks and adaptive attention modules. Dang et al. [16] developed YOLOWeeds
for multi-class weed detection in cotton production and identified YOLOv5n and YOLOv5s
as effective for weed detection. Cui et al. [17] investigated the YOLO-FT deep learning
algorithm for UAV-based smart agriculture, emphasizing the role of drones in data acquisi-
tion and improved pollination through advanced object detection technology. Additionally,
Badgujar et al. [18] conducted a comprehensive literature review highlighting YOLO’s
significance in agricultural object detection, focusing on its performance characteristics and
potential for advancing knowledge in the agricultural sector.

As a result, effectively classifying strawberry products and implementing defect detec-
tion strategies emerge as potential issues that could be solved by applying machine vision
within agricultural enterprises engaged in strawberry processing and cultivation [19]. To
address the challenges of strawberry classification and defect mitigation, these enterprises
can utilize web technologies and YOLO-integrated technologies for quality control activi-
ties. With the increasing availability of Convolutional Neural Network (CNN) variations in
computer vision, various network architectures built on them have been used for defect
detection, producing significant results [20]. This approach not only reduces overall costs
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but also enhances the efficiency of agricultural operations, aligning seamlessly with the
principles of smart agriculture (SA).

This study aims to showcase the applicability of the SA concept within the straw-
berry processing industry, marking a stride toward overall agricultural productivity. To
accomplish this objective, the authors have devised and implemented edge devices, web
applications and machine vision YOLOv8 n, s, m, l, and x and YOLOv9 m, c, t, s and e
architectures for small strawberry processing enterprises, offering several benefits.

The motivation for this article stems from the need for efficient and accurate classifica-
tion of strawberry defects during processing. Given the shortage of human labor and the
critical timing required for processing, machine vision and automation are necessary to
enhance productivity and quality control. The primary objective of this study is to develop
a strawberry defects classification model capable of identifying the location of defective
strawberries and distinguishing between different classes of strawberries based on their
condition. The main contributions of this work are two-fold:

• It introduces a new dataset aimed at advancing research in object detection systems,
specifically for the classification of strawberries. This dataset is used with YOLO
version 8 (YOLOv8) n, s, m, l, and x, as well as with YOLO version 9 (YOLOv9) c, m, s,
t, and e architectures.

• Models based on the YOLO8 and YOLO9 architectures are proposed to effectively
perform object detection for the three identified classes of strawberries.

By addressing these objectives, the study aims to enhance the efficiency and accuracy
of defect strawberry classification, ultimately improving the quality and sustainability
of fruit processing operations. The novelty of this research is multifaceted and can be
discussed from several angles. Firstly, it marks a significant step towards enhancing overall
agricultural productivity by applying the SA concept within the strawberry processing
industry. Developing and implementing a new hardware and software infrastructure
enables quick reporting of defects in alignment with ISO 9001:2015 [21] and IFS FOOD
guidelines [22]. This infrastructure supports the efficient management of quality and de-
fects, which is crucial for maintaining high standards in strawberry production. Secondly,
introducing a dataset advances the current state of research in object detection systems,
specifically targeting the classification of strawberries using YOLOv8 n, s, m, l, and x and
YOLOv9 m, c, t, s and e architectures. This approach enhances the accuracy of defect
detection and addresses the limitations of traditional manual methods, which are often
labor-intensive and inefficient. This comprehensive approach ensures that the models
perform well under diverse conditions, reflecting real-world scenarios. Finally, integrating
edge devices, web applications and machine vision algorithms improves quality control
measures in agriculture. This integration exemplifies the application of modern technolo-
gies to address the challenges faced by the agricultural sector, particularly in strawberry
processing.

The subsequent sections of the paper explore the integration of SA and Quality 4.0
concepts, focusing on innovative technologies such as the Internet of Things, cloud com-
puting, machine vision, and data analytics, which are essential for maintaining agricultural
competitiveness (Section 2.1). The role of machine vision in managing defects in straw-
berries is discussed, covering detection and classification processes to ensure continuous
quality control (Section 2.2). The strawberry storage process is described in detail, high-
lighting steps from handpicking to packaging to maintain quality and safety (Section 2.3).
The design of software components for SA, including a tailored quality control system
using computer vision, is detailed, showcasing how various technologies are employed
(Section 2.4). Data acquisition and processing are explained using a Zenodo dataset and
YOLOv8 and YOLOv9 models for defect detection (Section 2.5). The performance of these
models is assessed using standard metrics (Section 2.5.4). The results section illustrates the
practical application of the system in real-life scenarios, such as strawberry classification by
defects (Section 3). The significance of defect reporting and the development of a modu-
lar software solution for defect identification and reporting in SA are highlighted in the
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discussion (Section 4). Finally, the importance of SA-driven quality control in achieving
superior standards and addressing the challenges of defect identification is emphasized in
the conclusion (Section 5).

2. Materials and Methods

The research is based on the significant advancements in machine vision and defect
detection technologies that have occurred over the past few decades. The authors of this
paper conducted a thorough literature review to comprehend the historical development
and advancements in machine vision and defect detection technologies. This provided a
fundamental understanding of the current state-of-the-art and identified gaps in existing
research. Through the review, the authors identified key techniques and algorithms that
have been successfully applied in similar contexts, with a particular focus on the YOLO
family of algorithms due to their efficiency and accuracy in real-time object detection.

A comprehensive dataset of strawberry images, comprising both defective and non-
defective samples, was compiled. Based on the literature review and preliminary ex-
periments, the authors selected the YOLOv8 and YOLOv9 algorithms for their proven
effectiveness in object detection tasks. These models were trained on a Lenovo ThinkPad
P16 (Lenovo, Quarry Bay, Hong Kong) with an Intel Core iHX processor (Intel, Santa Clara,
CA, USA) and NVIDIA RTX GPU (NVIDIA, Santa Clara, CA, USA). This setup ensured
efficient and powerful computation capabilities for model training. A Dahua 2MP network
camera (Dahua Technology, Hangzhou, China) with full-color technology was used for
real-time image acquisition, strategically positioned above a conveyor belt to capture im-
ages of strawberries as they moved along the production line. A local server (Lenovo) was
configured to process the images in real-time, hosting the trained YOLOv8 models and
managing the data received from the camera. A Unitronics PLC (Unitronics, Tel Aviv, Israel)
control unit was integrated to manage the operational aspects of the system, facilitating the
activation of a jet mouth mechanism to remove defective strawberries based on the model’s
detections.

Processed data were archived in the cloud, and data visualization tools and statistical
modules were employed to analyze defect patterns and system performance. A web
interface was developed to provide real-time insights and reports on defect detection,
allowing stakeholders to monitor the system’s performance and make informed decisions.
The integrated system was tested in a real-world environment to validate its accuracy and
reliability. Performance metrics such as detection accuracy, processing speed, and false
positive rates were measured and analyzed. Based on the validation results, the models
and system configurations were continuously refined to enhance overall performance and
address any identified issues.

2.1. Smart Agriculture and Quality 4.0 Concepts

The foundation of the SA paradigm rests upon the advancement of innovative tech-
nologies such as the Internet of Things, cloud computing, machine vision and data ana-
lytics [23,24]. Acknowledging the dynamic nature of the agricultural sector, SA emerges
as a requisite for maintaining competitiveness amidst uncertainty [25]. Its overarching
objective is to foster agricultural models characterized by flexibility in product offerings
and services, facilitated by seamless communication among stakeholders and agricultural
facilities throughout the agricultural production and processing cycle [26].

In essence, SA and fruit production and processing should encapsulate several key
Quality 4.0 domains, as outlined by Javaid et al. [27]. These components include the
following: (1) monitoring of strawberry condition in near real-time feedback from inter-
connected edge devices accompanied with growing volumes of data; (2) analyses offering
descriptive, diagnostic, predictive, and prescriptive capabilities, (3) logistics encompassing
mobile applications, platforms, web clients, browsers, and applications for robotics and
machinery; and (4) control overseeing autonomous and interconnected processes, including
electronic submission of compliance/defect reports and automation of compliance work-
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flows. The objective is to support company endeavors in enhancing strawberry production
and processing processes, machinery utilization, and employee operability through the
digitalization of strawberry classification and defect detection.

Hence, within the framework of SA, emerging technologies become both cost-effective
and readily available to a wider spectrum of agricultural enterprises, presenting an unprece-
dented opportunity to address persistent quality issues and embrace innovative solutions.
Guided by these proposed domains, the primary objective of this paper is to present the
development of a mobile solution for fruit classification and defect detection. This solu-
tion is anchored in the aggregation of extensive big data, driving advancements in smart
agriculture and strawberry production and processing.

2.2. Agricultural Products Defects Management

Many studies have focused on fruit detection but have overlooked the problem of
detecting fruits at multiple stages. The DSE (Detail-Semantics Enhancement) YOLO method
was proposed by Du et al. [28] to detect multi-stage strawberries. In the DSE-YOLO method,
the DSE module was designed to detect small fruits and distinguish different stages of
fruit development with higher accuracy. The results show that DSE-YOLO can almost
accurately detect each stage of strawberry development in natural conditions, providing an
important theoretical basis for automatic picking and monitoring systems [13]. An et al. [29]
highlight the challenge of swiftly and accurately identifying strawberry growth conditions
and maturity for automated orchard management robots, particularly for operations like
automatic pollination, fertilization, and picking. Strawberries, with their short ripening
period and heavy overlap and shading, pose significant challenges to traditional detection
methods regarding efficiency and effectiveness.

To address this, the authors propose SDNet (Strawberry Detect Net), an algorithm
based on the YOLOX model. Their findings address the challenge of accurately monitor-
ing strawberry fruit growth states in complex environments, offering crucial insights for
advancing unmanned farming and SA technologies. Luo et al. [30] present an improved
method for recognizing small target strawberries using the YOLOv8n model, addressing
the challenges of detecting smaller strawberries and reducing misdetections caused by
complex backgrounds in strawberry images. Bai et al. [31] emphasize the importance of
accurately identifying strawberry seedling flowers and fruits in greenhouse environments
for automated flower and fruit thinning, which enhances efficiency and reduces labor
costs in cultivation. The authors propose an algorithm that integrates a Swin Transformer
prediction head on the high-resolution feature map of YOLO v7 to leverage spatial lo-
cation information, enhancing detection accuracy for small targets amidst scenes with
similar colors and occlusions. These algorithms primarily focus on enhancing the accuracy
and efficiency of detecting strawberry fruits and flowers in various environments and
developmental stages.

Thus, machine vision YOLO models could play a crucial role in identifying defects in
strawberries. These models may be adept at detecting various types of defects present on
the surface of strawberries, ranging from physical damage to discoloration. Typical defects
include mechanical damage, physiological disorders, internal defects, morphological and
pathological disorders, and customer and supplier returns [32]. Once a defect is detected,
these models can further classify them based on their severity or type, allowing for a
nuanced understanding and differentiation between defective and healthy strawberries.
The continuous monitoring capabilities of machine vision models ensure ongoing quality
control throughout the strawberry production and processing stages.

By monitoring strawberries, these models can promptly identify any potential defects,
enabling intervention to prevent further deterioration and maintain product integrity. This
entails the imperative implementation of quality control mechanisms, facilitating the early
detection of defects and the reduction in production waste [33]. Analysis of the relevant
literature [33] reveals distinct objectives for the solution outlined in this paper across several
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categories: (1) affordability and suitability for the SA; (2) incorporation of computer vision
(YOLOv8 n, s, m, l and x) modules, and aligning with the analytic modules.

2.3. Initial Assumptions and Objectives for the Present Study

The strawberry storage process involves several meticulously designed steps to ensure
the fruits remain high quality and safe for consumption. Strawberries are handpicked at
optimal ripeness to prevent physical damage and ensure peak quality. Following harvest,
the fruits undergo preliminary sorting to remove any visibly damaged, rotten, or unripe
specimens [34]. The strawberries are then thoroughly cleaned and washed to eliminate
dirt, pesticides, and other impurities, ensuring their hygiene and safety. Detailed sorting
follows, where strawberries are categorized by size, color, and quality, either manually or
with machines, to select the best fruits for subsequent processing. These sorted strawberries
are then rapidly frozen through flash freezing, preserving their freshness, texture, and
nutritional value by forming small ice crystals. Finally, frozen strawberries are packed
into protective, often vacuum-sealed or airtight, containers labelled with relevant product
information, including the freezing and expiration dates. This comprehensive process
guarantees that the strawberries maintain their quality and nutritional integrity from
harvest to consumption.

Driven by the outlined assumptions, activities in the strawberry storage process and
the imperatives of quality, particularly concerning defect reporting, this study aims to
leverage technologies from the SA toolkit, such as edge devices and machine vision YOLO
algorithms. These technologies could be applied for preliminary and detailed sorting
activities, utilizing high-resolution imaging and AI algorithms to categorize strawberries
based on predefined quality criteria. The study seeks to optimize the entire strawberry
storage and processing workflow through these innovations, ensuring adequate product
quality and consumer satisfaction in the SA context.

The overarching goal is to demonstrate how the development of an accessible cloud-
based solution utilizing JavaScript ECMAScript 2024, Python 3.11.5, and MySQL 8.0.35
databases holds promise for facilitating real-time defect identification, thereby fostering
engagement, continuous improvement, and evidence-based decision-making.

2.4. Design of General Software Components, Their Interrelationships, and Available Technologies
for Smart Agriculture Consolidation

The schematic presentation of software components and their interconnections is
illustrated in Figure 1 based on Zhang et al. [35]. This figure provides insight into the
potential technologies that could be employed to realize various software components and
their interplay across distinct tiers within the software architecture. Additionally, Section 2.5
introduces a tailored software infrastructure, aligning with contemporary technological
advancements.

Figure 1 illustrates the potential technologies encompassed within the developed solu-
tion. The proposed software integrates computer vision techniques utilizing YOLOv8 n, s,
m, l, and x and YOLOv9 c, m, s, t, and e algorithms, coupled with edge camera deployment
positioned above the narrowing conveyor belt transporting strawberries. For training the
YOLOv8 and YOLOv9 algorithms, a Lenovo ThinkPad P16 (Lenovo, Quarry Bay, Hong
Kong) with an Intel Core i7-12850HX processor (16 × 1.5–4.8 GHz) (Intel, Santa Clara, CA,
USA) and NVIDIA RTX A2000 Laptop GPU (8 GB VRAM) (NVIDIA, Santa Clara, CA, USA)
was utilized (step 1). This configuration supports computational tasks required for training
machine-learning models, ensuring the readiness of the algorithms for defect detection and
strawberry data management.

For this application, a Dahua 2MP network bullet camera (Dahua Technology, Hangzhou,
China) with full-color technology was employed (1/2.8” CMOS with progressive scan).
It operates effectively in low light conditions and provides a maximum resolution of
1920 × 1080. The camera features a fixed 2.8 mm lens, H.265+/H.264+ compression, and
an IP67 protection rating, making it suitable for indoor and outdoor environments with its
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120dB WDR and 30 m LED illumination range. Video analytics capabilities such as Tripwire
9.1.0 and intrusion detection enhance its functionality. These features facilitate real-time
image acquisition (step 2), with captured images relayed promptly to a local server for
processing (step 3).

The local server, a Lenovo W541 (Lenovo, Quarry Bay, Hong Kong), supports the
computational demands of the system with its Intel i7-4810MQ processor (Intel, Santa
Clara, CA, USA) running at 2.80 GHz (Turbo up to 3.80 GHz), 32 GB DDR3 RAM, and
a 512 GB SSD for fast data access. Graphics processing is handled by an Intel HD 4600
integrated GPU (Intel, Santa Clara, CA, USA) and an NVIDIA Quadro K2100M with 2 GB
DDR5 VRAM (NVIDIA, Santa Clara, CA, USA). The trained models are hosted on the local
server, facilitating real-time decision-making based on captured data (step 4).

The system can activate the control unit, a PLC Unitronics (step 5) (Unitronics, Tel Aviv,
Israel). This control unit subsequently activates the jet mouth to remove defective strawber-
ries (step 6). Processed data are archived in the cloud, supporting storage, visualization
tools, and statistical modules (step 7), enabling continuous quality control improvement.
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2.5. Incorporated Quality Control System Using Computer Vision

This section explains the general solution description depicted in Figure 1, focusing
on understanding the specific needs of small and medium-sized agricultural enterprises.
Additionally, we intend to underscore the prevailing trends of SA, which encompass cen-
tralized data platforms and a heightened emphasis on achieving continuous improvements
promptly.

2.5.1. Data Acquisition

The image data utilized to underpin this investigation were sourced from a Zenodo
data set [36]. Approximately 230 images for each defect of strawberries were captured
for analysis. An exemplary color image is depicted in Figure 2a. This comprehensive
set of images was the foundation for identifying potential defects that may arise during
the strawberry classification processes. Additionally, it facilitated the enhancement of the
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selection process, ensuring that only the highest quality strawberries proceed to further
processing stages. By meticulously analyzing these images, it is possible to pinpoint specific
areas for improvement, optimizing the accuracy and efficiency of the overall strawberry
sorting and processing workflow. Furthermore, this image set was used to train YOLOv8
and YOLOv9 models.
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strowberies; (b) labeled defected strowberies.

2.5.2. Data Processing

A dataset was built with 467 selected defective strawberry objects to train the straw-
berry defect detection algorithms. All images were processed to be resized to dimensions
of 832 × 832 pixels, which is the resolution required for the application of the YOLOv8 n,
s, m, l, and x and YOLOv9 m, c, t, s and e algorithm. This procedure enabled the consis-
tent application of the algorithm for shape recognition and phenotyping of strawberries.
Strawberries were divided into two classes: “Unripe Strawberries” (B class) and “Defected
Strawberries” (C class). Manual labelling of strawberries in these classes was based on the
fruit grading method described by Afzaal et al. [5] and recommendations from strawberry
enterprise, as follows: Unripe Strawberries—strawberries with green color covering over
90% of the surface area; Defected Strawberries—strawberries with fuzzy grey mold on the
surface, mechanically damaged strawberries, and rotten strawberries that are discolored.

To detect and classify strawberry defects into different classes, all strawberry defects
in the images were labelled with bounding boxes and classes, as shown in Figure 2b. After
the images were labelled, 467 objects were identified with a given class.

2.5.3. YOLO Object Detection

This investigation employed YOLOv8 n, s, m, l, and x and YOLOv9 m, c, t, s and e
models to detect strawberry defects across defined classes. Table 1 presents the training
parameters utilized for the YOLOv8 n, s, m, l, and x and YOLOv9 m, c, t, s and e models.
Following the generation of bounding boxes around strawberries using the LabelImg 1.8.6
module, these bounding boxes were subsequently fed into the YOLOv8 n, s, m, l, and x and
YOLOv9 m, c, t, s and e models to identify the strawberry defect class. The input image
sizes for YOLOv8 n, s, m, l, and x and YOLOv9 m, c, t, s and e were configured as 832 × 832,
aiming to preserve the key features of objects (strawberries with varying degrees of defects)
within the images. Table 1a,b provide a comprehensive summary of all defined parameters.
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Table 1. (a) Parameters of YOLOv8 n, s, m, l and x training. (b) Parameters of YOLOv9 m, c, t, s and
e training.

(a)

Parameter YOLOv8 n YOLOv8 s YOLOv8 m YOLOv8 l YOLOv8 x

Size of the input image 832 × 832 832 × 832 832 × 832 832 × 832 832 × 832

Max training batch 4 4 4 2 1

Number of classes 2 2 2 2 2

Pretrained weights 319/355 349/355 589/595 589/595 589/595

Learning rate 0.01 0.01 0.01 0.01 0.01

Momentum 93.7% 93.7% 93.7% 93.7% 93.7%

Optimizer AdamW AdamW AdamW AdamW AdamW

Epochs 20 20 20 20 20

(b)

Parameter YOLOv9 m YOLOv9 c YOLOv9 t YOLOv9 s YOLOv9 e

Size of the input image 832 × 832 832 × 832 832 × 832 832 × 832 832 × 832

Max training batch 4 4 4 4 4

Number of classes 2 2 2 2 2

Pretrained weights 901/907 931/937 1303/1339 1333/1339 1805/1811

Learning rate 0.01 0.01 0.01 0.01 0.01

Momentum 93.7% 93.7% 93.7% 93.7% 93.7%

Optimizer AdamW AdamW AdamW AdamW AdamW

Epochs 20 20 20 20 20

The table compares YOLOv8 n, s, m, l, and x and YOLOv9 m, c, t, s and e models. These
models share a standardized input image size of 832 × 832 pixels, ensuring uniformity in
image processing. They vary, however, in their maximum training batch sizes: YOLOv8 n,
s, and m and YOLOv9 m, c, t, s and e are configured with a batch size of 4 images, while
YOLOv8 l operates with 2 images, and YOLOv8 x with just 1. This difference influences
training efficiency and GPU memory utilization.

Each model is designed to detect 2 classes, focusing on a binary classification task.
They all initialize training using pre-trained weights, with varying degrees of weight
utilization: YOLOv8 n starts with 319 out of 355 weights, YOLOv8 s with 349, and YOLOv8
m, l, and x with 589 out of 595 weights. YOLOv9 m starts with 901 out of 907 weights,
YOLOv9 c with 931 out of 937, YOLOv9 t, and s with 1303 and 1333 out of 1339 weights
and YOLOv9 e with 1805 out of 1811 weights. This initialization strategy accelerates the
convergence of training.

All models employ a consistent learning rate of 0.01 and a momentum of 93.7%,
optimized with the AdamW optimizer. Training is conducted over 20 epochs for each
model, ensuring comprehensive exposure to the dataset for robust learning and accurate
object detection. These configurations collectively underscore the models’ versatility and
capability in handling object detection tasks across various scales and computational
capacities. The architecture of the proposed YOLOv8 n, s, m, l and x models consists of
a series of convolutional layers, Cross-Stage Partial Network (CSP) with Two Flow Paths
(C2f) blocks, a Spatial Pyramid Pooling Fast (SPPF) block, and Concat and Upsample layers.
The convolutional layers are designed to extract basic features from input images, while the
C2f blocks enable deeper learning of complex features through residual connections. Using
the SPPF block further enhances the model’s ability to detect objects of various sizes by
combining information from different spatial pyramid levels. The Concat layers integrate
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outputs from different levels of the network, and the Upsample layers increase image
resolution while preserving spatial information, allowing for better detection at various
scales. Finally, the detect head utilizes information from the previous layers to predict object
boundaries and their classes, ensuring accurate and rapid detection results. The architecture
of the proposed YOLOv9 m, c, t, s and e models consists of a series of convolutional
layers, Efficient Layer Aggregation Network (ELAN) blocks, Replicated Non-CSP ELAN
(RepNCSPELAN) blocks, SPPELAN (Spatial Pyramid Pooling with ELAN) blocks, and
Concat and Upsample layers. The convolutional layers are designed for the initial extraction
of basic features from input images, while the ELAN blocks enable deeper learning of
complex features through efficient layer aggregation. RepNCSPELAN blocks further
enhance the model’s ability to detect objects of various sizes by combining information
from different levels of the spatial pyramid. SPPELAN blocks provide additional layering
and improve detection efficiency by combining spatial pyramid pooling with ELAN blocks.
The Concat layers integrate outputs from different levels of the network, and the Upsample
layers increase image resolution while preserving spatial information, allowing for better
detection at various scales. Finally, like with the YOLOv8 models, the detect head utilizes
information from the previous layers to predict object boundaries and their classes, ensuring
accurate and rapid detection results.

The YOLOv8 and YOLOv9 architectures consist of convolutional layers but differ sig-
nificantly in their block structures. YOLOv8 uses (Cross-Stage Partial with Two Flow Paths)
C2f blocks and an SPPF (Spatial Pyramid Pooling Fast) block to enhance feature learning
and multi-scale object detection. In contrast, YOLOv9 introduces blocks like (Efficient Layer
Aggregation Network) ELAN, (Replicated Non-CSP ELAN) RepNCSPELAN, and (Spatial
Pyramid Pooling with ELAN) SPPELAN, which should provide efficient layer aggregation
and improved detection capabilities. YOLOv9’s architecture should offer reduced parame-
ter count and higher efficiency (7.8 GFLOPs vs. YOLOv8’s 8.2 GFLOPs) while maintaining
or enhancing detection performance through sophisticated layer integration and spatial
pyramid pooling mechanisms.

2.5.4. Performance Assessment

Standard performance metrics for object detection in images or video sequences
derived from a confusion matrix are used to evaluate YOLOv8 n, s, m, l, and x and
YOLOv9 m, c, t, s and e models. This matrix has a significant role within the evaluation
framework, presenting a comprehensive dissection of the model’s prognostications. It
encapsulates four fundamental components: true negatives (TN), denoting accurately
predicted negatives; false positives (FP), signifying erroneously identified positives; false
negatives (FN), indicating misclassifications of true positives; and true positives (TP),
representing correct identifications of positives. Through its meticulous delineation, this
matrix furnishes essential insights into the discriminative capacity and performance of the
model under scrutiny.

In the context of the YOLOv8 n, s, m, l, and x and YOLOv9 m, c, t, s and e models, the
following metrics were computed:

• Precision (p): In predictive analytics, precision is a litmus test for the model’s efficacy
in discerning positive instances. It quantifies the fidelity of positive predictions by
assessing the ratio of true positive identifications to the aggregate of all positive prog-
nostications. Thus, precision elucidates the model’s discerning prowess in accurately
pinpointing instances of interest amidst the broader dataset:

p =
True Positives

True Positives + False Positives

• Recall (r): Serves as a critical barometer of the model’s proficiency in correctly iden-
tifying positive instances within the dataset. This metric is derived by dividing the
count of true positive predictions by the sum of true positives and false negatives.
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In essence, recall provides a nuanced evaluation of the model’s ability to capture all
relevant instances of interest, thus illuminating its sensitivity to positive phenomena.

r =
True Positives

True Positives + False Negatives

• Average precision (AP): This frequently used measure assesses object detection accu-
racy. AP calculates the average precision for different evaluation thresholds and then
computes the mean of those precisions.

AP = ∑N(rn+1 − rn)
max
∼
r :
∼
r

3
rn+1 p(

∼
r )

• Mean average precision (mAP): This is the average of AP values across all object
classes. It is used to gain an overall insight into the performance of object detectors.

mAP =
1
N ∑N

i=1 APi

• Mean average precision 50–95 (mAP50–95): This is the mean of the AP values calcu-
lated at each Intersection over Union (IoU) thresholds from 0.50 to 0.95. Sum all the
AP values and divide by the number of IoU thresholds used.

mAP50 − 90 =
1
10∑10

i=1 AP0.50+i×0.05

• F1 score: This metric serves as a harmonious amalgamation, delicately balancing
the evaluation of the model’s precision and recall performance. By encapsulating
both precision and recall into a single metric, the F1 score furnishes a comprehensive
assessment of the model’s ability to simultaneously achieve high precision in positive
predictions while maintaining a robust recall rate, thus elucidating its overall efficacy
in classification tasks.

F1 Score =
2 × p × r

p + r

• Layers refer to the number of distinct layers within a neural network model. In
the context of the provided values, each model variant (YOLOv8 and YOLOv9) has
different layers, indicating the network’s depth and complexity. A higher number of
layers typically allows the model to learn more intricate features and representations
from the data, potentially improving its performance on complex tasks. However,
increasing the number of layers can also lead to more significant computational
requirements, longer training times, and challenges related to training stability and
convergence.

• Params (M), or the number of parameters in a model expressed in millions, represents
the total count of trainable weights and biases in a neural network. This metric is
crucial as it determines the model’s capacity to learn from data. A model with more
parameters can potentially capture more complex patterns and relationships in the
data. However, this increased capacity can also lead to higher memory usage and
longer training times and may increase the risk of overfitting if not appropriately
managed.

• FLOPs (B), or floating point operations per second, measure the computational com-
plexity of a model expressed in billions. This metric is essential for evaluating the
efficiency and speed of a model. A lower FLOP count generally indicates a faster and
less resource-intensive model, which is particularly beneficial for real-time applications
and deployment on devices with limited computational resources.
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3. Results

In this section, the practical application of the system is illustrated through a real-life
example: the classification of strawberries by the presence of defects. Additionally, data
collected from the utilization of this system in the mentioned SME is presented to provide
insights into its effectiveness and impact in real-world scenarios.

To demonstrate the efficacy of the developed system, a real-world case study is pre-
sented, focusing on the unripe strawberries (Class B) or the detection of strawberries
exhibiting grey mold, rot, and mechanical damage (Class C). The performance of various
YOLOv8 and YOLOv9 models on detecting strawberry defects is presented in Table 2a,b, re-
spectively. The results reveal distinct differences in model complexity, speed, and detection
accuracy.

Table 2. (a) Summary of key performance metrics for YOLOv8 Models. (b) Summary of key
performance metrics for YOLOv9 Models.

(a)

Metric YOLOv8 n YOLOv8 s YOLOv8 m YOLOv8 l YOLOv8 x

p 0.828 0.854 0.826 0.497 0.536

r 0.957 0.863 0.878 0.992 0.933

mAP 0.945 0.942 0.896 0.601 0.581

mAP50–95 0.931 0.920 0.870 0.588 0.554

F1 score 0.888 0.859 0.851 0.661 0.679

layers 168 168 218 268 268

parameters 3,006,038 11,126,358 25,840,918 43,608,150 68,125,494

FLOPs (B) 8.7 28.6 78.9 165.2 257.8

(b)

Metric YOLOv9 m YOLOv9 c YOLOv9 t YOLOv9 s YOLOv9 e

p 0.761 0.813 0.832 0.831 0.498

r 0.899 0.936 0.889 0.877 0.997

mAP 0.918 0.931 0.938 0.934 0.597

mAP50–95 0.902 0.906 0.92 0.913 0.582

F1 score 0.824 0.870 0.860 0.853 0.664

layers 374 384 917 486 687

parameters 20,014,438 25,320,790 2,005,798 7,167,862 57,377,942

FLOPs (B) 76.3 102.1 7.7 26.4 189.0

The YOLOv8n model, with 168 layers and 3,006,038 parameters, achieved high preci-
sion (p) of 0.828 and recall (r) of 0.957, resulting in a mean average precision (mAP) of 0.945
at 50% IoU and 0.931 across IoUs ranging from 50% to 95%. The YOLOv8s model, also
with 168 layers but significantly more parameters (11,126,358), exhibited slightly higher
precision at 0.854 but lower recall at 0.863, achieving a mAP of 0.942 and mAP50–95 of
0.92. The YOLOv8m model, with 218 layers and 25,840,918 parameters, demonstrated a
balanced performance with a precision of 0.826 and recall of 0.878, yielding a mAP of 0.896
and mAP50–95 of 0.87. The YOLOv8l model, with 268 layers and 43,608,150 parameters,
showed a significant drop in precision to 0.497 but maintained a very high recall of 0.992.
This model achieved a mAP of 0.601 and a mAP50–95 of 0.588. Lastly, the YOLOv8x model,
with the highest complexity of 268 layers and 68,125,494 parameters, had a precision of
0.536 and recall of 0.933, with a mAP of 0.581 and mAP50–95 of 0.554. The calculated
F1 scores reveal that the smaller YOLOv8 models (n, s, and m) consistently demonstrate
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higher harmonic mean values of precision and recall, indicating better overall performance
and balance in detecting and correctly identifying strawberry defects compared to the
larger YOLOv8 models (l and x), which show lower F1 scores despite their higher com-
putational complexity. Regarding computational speed on CPU using ONNX, YOLOv8 x
emerges as the slowest among the variants, requiring considerable processing time. This
characteristic suggests potential challenges in applications where rapid detection is nec-
essary. The disparity in model parameters and FLOPs across YOLOv8 n to YOLOv8 x
highlights trade-offs between model complexity and computational efficiency. YOLOv8 n,
with fewer parameters, offers a lightweight alternative suitable for resource-constrained
environments, whereas YOLOv8 x, with higher FLOPs, demands greater computational
power but promises enhanced detection accuracy.

The results indicate a trade-off between model complexity, speed, and detection
performance. Larger models are expected to perform better due to their increased capacity.
However, given the limited number of images and the inability of our configuration to
handle larger batch sizes, the larger models proved inadequate for this project under
the constraints we faced. Simpler models like YOLOv8n and YOLOv8s provided faster
inference with high detection accuracy, whereas more complex models like YOLOv8m,
YOLOv8l, and YOLOv8x while offering nuanced detection capabilities, resulted in slower
inference speeds and varying detection accuracies.

The YOLOv9 series introduces several advancements over its predecessors, showcas-
ing a range of models tailored to different needs and capabilities. The YOLOv9m model,
with 374 layers and 20,014,438 parameters, achieved a precision of 0.761 and a high recall
of 0.899, resulting in a mean average precision (mAP) of 0.918 and a mAP across IoUs
from 50% to 95% of 0.902. This model balances accuracy and efficiency, demonstrating a
solid F1 score of 0.824. In comparison, the YOLOv9c model, with 384 layers and 25,320,790
parameters, exhibits slightly better precision at 0.813 and a recall of 0.936. It achieved an
mAP of 0.931 and a mAP50–95 of 0.906. The YOLOv9c model’s F1 score of 0.870 indicates
a well-rounded performance with a good balance of precision and recall. The YOLOv9t
model, featuring 917 layers and 2,005,798 parameters, demonstrates the highest precision at
0.832 but a lower recall of 0.889. It recorded a mAP of 0.938 and a mAP50–95 of 0.920, with
an F1 score of 0.860, reflecting its strong precision but slightly lower recall. The YOLOv9s
model, with 486 layers and 7,167,862 parameters, presents a precision of 0.831 and a recall
of 0.877, achieving a mAP of 0.934 and a mAP50–95 of 0.913. This model maintains a good
balance between precision and recall, with an F1 score of 0.853. The YOLOv9e model,
characterized by its substantial complexity with 687 layers and 57,377,942 parameters,
shows lower precision at 0.498 but an exceptionally high recall of 0.997. This results in a
mAP of 0.597 and a mAP50–95 of 0.582. Despite its lower F1 score of 0.664, the YOLOv9e
model highlights a trade-off between precision and recall.

Overall, the YOLOv9 series demonstrates a range of trade-offs between model com-
plexity, precision, recall, and computational demands. The YOLOv9m and YOLOv9c
models offer strong performance with balanced precision and recall, while the YOLOv9t
model excels in precision. The YOLOv9s model provides a good compromise, whereas the
YOLOv9e model excels in recall but sacrifices precision. Each model in the YOLOv9 series
caters to different use cases, balancing accuracy and computational efficiency according to
specific needs.

The following images (Figure 3) showcase the performance confidence curves for the
YOLOv8n model, which was identified as the best-performing model in the evaluation
process. YOLOv8n is generally better than YOLOv9m and YOLOv9c regarding perfor-
mance metrics (p, r, mAP, F1 score) and computational efficiency. YOLOv8n provides better
accuracy and efficiency, making it a more suitable choice if you need a balance of high
performance and lower computational demand. YOLOv9m and YOLOv9c offer adequate
precision and recall but at a significantly higher computational cost. Therefore, YOLOv8n
was selected as the preferable model for practical application where resource efficiency is
important.
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Each curve represents the score for a specific class (B, C) and the overall performance
across all classes. The blue line is for Class C, the orange line is for Class B, and the thick,
dark blue line is for the overall score for all classes. The F1–confidence curve (Figure 3a)
includes the performance for classes B and C, as well as the overall performance across all
classes, with the maximum F1 score of 0.89 reached at a confidence threshold of 0.369. This
indicates that a confidence threshold of 0.369 is recommended for optimal overall model
performance. The curve for Class C demonstrates better and more stable performance than
Class B, whose F1 score declines sharply at higher confidence thresholds, suggesting that
the model struggles more with precision or recall for Class B at higher thresholds. This
analysis aids in selecting the optimal confidence threshold, balancing precision and recall,
and provides a detailed understanding of the model’s overall performance for individual
classes. As the confidence threshold increases from 0 to 1, the precision (Figure 3a) improves
steadily for both individual classes and the aggregate. The model achieves perfect precision
(1.00) for all classes at a confidence threshold of 1.0, indicating that all predicted positives
are true positives at this threshold. The precision for Class C consistently surpasses that of
Class B across the confidence spectrum, suggesting the model performs better in predicting
Class C with fewer false positives. As the confidence threshold increases from 0 to 1, recall
generally decreases (Figure 3c). The model achieves perfect recall (1.00) for all classes at
a confidence threshold of 0.000, indicating that at this threshold, all actual positives are
correctly identified by the model. The recall for Class C is consistently higher than for Class
B across the confidence spectrum, suggesting that the model performs better in capturing
true positives for Class C. As the confidence threshold increases, the recall for both classes
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declines, with a more pronounced drop observed for Class B, highlighting the model’s
diminishing ability to identify true positives at higher confidence levels. Finally, the pr
curve (Figure 3d) for Class C is the highest, indicating that the classifier is most precise for
this class. The pr curve for Class B is lower than the pr curve for Class C but still quite high.
The overall mean average precision (mAP@0.5) is a performance measure of the classifier,
calculated as the average precision at 11 points on the pr curve, with a threshold of 0.5
for each point. The mAP@0.5 in the figure is 0.945, which is a relatively high value. The
pr curve in the figure shows that the classifier is quite precise for all three classes. The
classifier is most precise for Class C and less precise for Class B. The overall mean average
precision of the classifier is relatively high.

In conclusion, the performance confidence curves for the YOLOv8n model demon-
strate its effectiveness across different classes and overall. The F1–confidence curve in-
dicates that the optimal confidence threshold for the model is 0.369, where it achieves a
maximum F1 score of 0.89. The model shows better and more stable performance for Class
C than Class B, suggesting that the model encounters difficulties with precision or recall for
Class B at higher thresholds. The precision–confidence curve reveals that precision steadily
improves as the confidence threshold increases, reaching perfect precision at a threshold
of 1.0. The model is more precise in predicting Class C, with fewer false positives, than
Class B.

Conversely, the recall–confidence curve shows a general decrease in recall as the
confidence threshold rises, with perfect recall at a threshold of 0.000. The model captures
true positives more effectively across the confidence spectrum for Class C. The PR curve
further confirms that the classifier is most precise for Class C, with high precision also
observed for Class B and overall. The high mean average precision (mAP@0.5) of 0.945
underscores the classifier’s strong overall performance. These findings highlight the
YOLOv8n model’s robustness and precision, particularly for Class C, while also indicating
areas for improvement in Class B predictions.

The following images (Figure 4) showcase the results obtained using the YOLOv8n
model. The model’s predictions include the detected object classes and the corresponding
confidence scores.

Through the implemented solution, it is possible to document and report instances
of defects effectively. Thus, subsequent analysis by decision-makers may lead to the
establishment of corrective measures, particularly in the case of grey mold, which has been
deemed a product defect requiring attention.

A participating company has undergone the implementation and certification of
following the IFS FOOD standard. Adopting IFS FOOD standard requirements enables this
organization to effectively manage the interrelationships and dependencies among various
processes, thereby enhancing overall organizational performance.

The implementation of the adopted IFS FOOD standard requirements offers several
benefits, including:

(a) Ensures consistent compliance with food safety regulations and standards, reducing
the risk of contamination and foodborne illnesses;

(b) Promotes rigorous quality control measures, resulting in higher product quality and
reliability;

(c) Builds trust among consumers by demonstrating a commitment to high safety and
quality standards;

(d) Ensuring the achievement of efficient process performance;
(e) Providing a foundation for continuous process improvement by evaluating relevant

data and information.
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The implemented solution offers access to statistical data derived from previous de-
fects classification, enhancing quality control and defects assessment processes. These
statistical data are instrumental in formulating recommendations and implementing correc-
tive measures [37]. During three months, differences in defect detection between visual
inspection performed by human resources (three practitioners, two female and one male,
mean age 30.9 years, SD = 3.2 years, mean work experience 7.7 years) and that carried out
using applied software (YOLOv8 n) were examined. The detection results are presented in
Table 3, summarising the key insights and outcomes derived from the statistical data analy-
sis, facilitating informed decision-making and continuous improvement initiatives within
the agricultural domain, particularly in classifying and processing strawberry defects.

The results indicate differences in the number of identified defects between human
and software inspections. On average, software inspection identified more defective
strawberries in both classes than human inspection. For instance, software inspection
identified 586 defects in Class B, whereas human inspection identified 562 defects. In
Class C, software inspection identified 15,544 defects, while human inspection identified
14,029 defects. These findings suggest that software inspection may be more effective in
identifying defective strawberries, especially in Class C, where defects are likely more
serious and harder to detect with the unaided eye.



Appl. Sci. 2024, 14, 7771 17 of 21

Table 3. Comparison of visual inspection results obtained by human resources and software solution
utilization in observed organization.

Month Defect Class
Number of Identified Defects

Human Resources
Inspection

Applied Software
Inspection

1
Class B 163 190

Class C 5128 5554

2
Class B 188 195

Class C 3653 3964

3
Class B 211 201

Class C 5248 6026

Overall
Class B 562 586

Class C 14,029 15,544

Software inspection can provide more consistent results in identification, reducing the
subjectivity that may be present in human inspection. This solution facilitates key quality
management principles, including evidence-based decision-making for quality managers.

4. Discussion
4.1. The Significance of Real-Time Reporting of Nonconformities via Edge Devices

Modern agricultural organizations can benefit from integrating advanced technologies
like edge devices for real-time defect reporting. The continuous evolution of SA solutions
offers high availability, constant data accessibility, and remote services, allowing organiza-
tions to enhance their business capabilities while minimizing costs. SA technologies enable
customizable, flexible, collaborative, and reconfigurable services, facilitating a unified
human–machine manufacturing system.

Our case study, implemented within an agricultural company, demonstrates how small
and medium-sized enterprises can expand their in-house, production-oriented applications
to include efficiency-enhancing SA solutions. By using YOLO models trained on cloud-
stored image data and deploying them on local edge devices, our defect detection solution
promotes continuous improvement in quality management. The edge devices identify and
report defects throughout manufacturing, emphasizing evidence-based decision-making
and improvement.

A Dahua 2MP network bullet camera with full-color technology was employed for
this application. This camera operates effectively in low light conditions and provides
a maximum resolution of 1920 × 1080. It features a fixed 2.8 mm lens, H.265+/H.264+
compression, and an IP67 protection rating, making it suitable for various environments.
The camera’s video analytics capabilities, such as Tripwire and intrusion detection, enhance
its functionality. The local server used for processing is a Lenovo W541 with an Intel
i7-4810MQ processor, 32 GB DDR3 RAM, and a 512 GB SSD. This configuration supports
the computational demands of the system, facilitating real-time decision-making based on
captured data.

4.2. Implementation Justification of a Modular Software for Defect Detection in Smart Agriculture

The novelty of this research lies in developing a modular software solution tailored for
identifying and reporting defects within the context of SA, strawberry classification, and
processing. The software solution is developed within an environment comprising MySQL
for the database, Python for the application tier, and JavaScript for the presentation tier.
This setup leverages the capabilities of SA technologies to create a framework conducive to
realizing the quality management objectives.
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Central to this paper is the fusion of SA research principles with quality objectives
aimed at achieving conformity to prevent defects and align strategic objectives with op-
erational enhancements. Organizations can leverage the software solution’s inherent
modularity, and organizations can streamline defect identification and reporting processes,
fostering greater transparency, efficiency, and effectiveness.

In essence, this research represents an effort in smart agriculture and strawberry
processing by offering a comprehensive software solution that harnesses the transformative
potential of SA technologies to usher in a new era of quality management and operational
excellence.

The achievement of quality objectives is facilitated through the enhancement of con-
nectivity with reports of emerging insights, the acquisition of knowledge through the
utilization of appropriate YOLOv8 and YOLOv9 models, and the automation of problem
reporting and resolution via intelligent agents using mobile devices.

5. Conclusions

Achieving superior quality standards and meeting consumer requirements are primary
objectives for modern agricultural companies. The study’s findings underscore the potential
of integrating SA-driven quality control and advanced information and communication
technologies (ICT) to enhance defect detection in strawberry processing.

The developed software solution, leveraging YOLOv8 and YOLOv9 models, demon-
strates significant promise in real-world applications. A real-life case study that classified
strawberries by detecting defects such as grey mold, rot, and mechanical damage provided
valuable insights into the system’s effectiveness. Performance metrics of various YOLOv8
models revealed critical differences in detection accuracy, speed, and computational com-
plexity, as summarised in Table 2. The YOLOv8n model, with its balance of precision and
recall, emerged as the most effective in terms of overall performance and computational
efficiency.

The novelty of our research can be underlined from multiple angles: (1) Integration
of Advanced Algorithms: We employ the latest YOLOv8 algorithms (n, s, m, l, and x) for
defect detection, which have not been extensively applied in the context of agricultural
product inspection. These algorithms offer enhanced speed and accuracy, making them
highly suitable for real-time applications. (2) Edge Device Deployment: The use of a
Dahua 2MP network bullet camera with full-color technology, combined with a local server
(Lenovo W541) for real-time processing, represents a significant advancement. This setup
allows for immediate defect detection and response, which is crucial for maintaining the
quality of perishable goods like strawberries. (3) Real-World Validation: The implemented
system was tested in a real-world environment, proving its reliability and effectiveness.
This practical validation underscores the applicability and robustness of our solution in
operational settings. (4) Interdisciplinary Approach: Our research bridges multiple disci-
plines, including computer vision, machine learning, and agricultural engineering. This
interdisciplinary approach enhances the overall impact and applicability of the research,
providing a robust framework for future advancements in the field.

5.1. Key Findings and Practical Implications

Model Performance: The YOLOv8n model achieved high precision (0.828) and recall
(0.957), with a mean average precision (mAP) of 0.945, making it effective for defect detec-
tion. In contrast, larger models like YOLOv8l, YOLOv8x, YOLOv9m, and YOLOv9c, while
offering nuanced detection capabilities, showed slower speeds and varied detection accura-
cies. This indicates a trade-off between model complexity and performance, highlighting
the need for balancing accuracy with computational efficiency.

Real-World Application: The system’s practical application was illustrated through
defect classification, demonstrating its effectiveness in identifying strawberries with defects.
Data collected from the SME showcased a higher detection rate using the software com-
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pared to human inspection, particularly for Class C defects, which are more challenging to
detect visually.

The software solution enhances defect reporting and quality control accuracy through
digitalization—streamlining defect reporting with a user-friendly interface—and accessib-
ility—offering an affordable, user-friendly solution suitable for the strawberry processing
industry.

Implementing the IFS FOOD standard in the participating company further enhances
quality control by ensuring compliance with food safety regulations, promoting rigorous
quality measures, and fostering continuous process improvement.

5.2. Additional Insights and Future Directions

Comparison with Human Inspection: The software’s ability to identify a higher
number of defects than human inspection, especially in Class C, indicates its effectiveness
in providing consistent and objective defect detection.

Model Optimization: The study underscores the importance of tailoring machine
learning models to the specific constraints of the deployment environment. Future work
could focus on optimizing these models for larger datasets and improving hardware
configurations to enhance their potential further.

Expansion and Integration: Potential areas for development include modules for
documentation management and integration with other organizational systems, such as
safety or environmental management systems, to facilitate holistic process optimization.

The study demonstrates that integrating advanced SA and ICT technologies into
quality control processes can significantly improve defect detection and management.
This research provides valuable insights for enhancing quality management practices and
operational excellence in the agricultural sector by offering a robust and efficient solution.

The system possesses the potential for enhancement and extension in various avenues.
One direction for advancement includes the development of modules for documentation
management, enabling more efficient handling of documentation related to quality control
processes. Moreover, interconnecting the system with other organizational systems, such as
those dedicated to safety or environmental management, can facilitate holistic management
and optimization of operational processes.

Author Contributions: Conceptualisation, M.S. and M.E.; methodology, A.D.; software, N.P.; val-
idation, R.J. and N.P.; formal analysis, A.D.; investigation, R.J.; resources, R.J.; data curation, N.P.;
writing—original draft preparation, A.D.; writing—review and editing, M.S. and M.E.; visualization,
A.D.; supervision, M.S.; project administration, A.D.; funding acquisition, M.S. and A.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Irpan, M.; Summantri, A.; Kurniawati, M.F.; Sukmana, R.A.; Shaddiq, S. Digital communication in agricultural extension in the

era of the industrial revolution 4.0. J. Eng. Manag. Inf. Technol. 2023, 1, 177–190. [CrossRef]
2. Oo, L.M.; Aung, N.Z. A simple and efficient method for automatic strawberry shape and size estimation and classification. Biosyst.

Eng. 2018, 170, 96–107. [CrossRef]
3. He, Z.; Karkee, M.; Zhang, Q. Detecting and localizing strawberry centers for robotic harvesting in field environment. IFAC-Pap.

2022, 55, 30–35. [CrossRef]
4. Hassan, H.E.; Abd El-Rahman, A.A.; Khalid, A.A. Quality evaluation of strawberry fruit using visible laser. Agric. Eng. Int. CIGR

J. 2018, 20, 157–163.

https://doi.org/10.61552/JEMIT.2023.04.003
https://doi.org/10.1016/j.biosystemseng.2018.04.004
https://doi.org/10.1016/j.ifacol.2022.11.110


Appl. Sci. 2024, 14, 7771 20 of 21

5. Afzaal, U.; Bhattarai, B.; Pandeya, Y.R.; Lee, J. An instance segmentation model for strawberry diseases based on mask R-CNN.
Sensors 2021, 21, 6565. [CrossRef] [PubMed]
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